mirror of https://github.com/coqui-ai/TTS.git
Change logging for the new cluster system
This commit is contained in:
parent
59771eabb3
commit
4160e8fca1
42
train.py
42
train.py
|
@ -134,7 +134,7 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
grad_norm_st, skip_flag = check_update(model.module.decoder.stopnet, 0.5, 100)
|
||||
if skip_flag:
|
||||
optimizer_st.zero_grad()
|
||||
print(" | > Iteration skipped fro stopnet!!")
|
||||
print(" | | > Iteration skipped fro stopnet!!")
|
||||
continue
|
||||
optimizer_st.step()
|
||||
|
||||
|
@ -142,12 +142,23 @@ def train(model, criterion, criterion_st, data_loader, optimizer, optimizer_st,
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item()),
|
||||
('stop_loss', stop_loss.item()),
|
||||
('grad_norm', grad_norm.item()),
|
||||
('grad_norm_st', grad_norm_st.item())])
|
||||
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
# ('linear_loss', linear_loss.item()),
|
||||
# ('mel_loss', mel_loss.item()),
|
||||
# ('stop_loss', stop_loss.item()),
|
||||
# ('grad_norm', grad_norm.item()),
|
||||
# ('grad_norm_st', grad_norm_st.item())])
|
||||
|
||||
if current_step % c.print_step == 0:
|
||||
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
|
||||
{:.5f}\t StopLoss: {:.5f}\t GradNorm: {:.5f}\t \
|
||||
GradNormST: {:.5f}".format(loss.item(),
|
||||
linear_loss.item(),
|
||||
mel_loss.item(),
|
||||
stop_loss.item(),
|
||||
grad_norm.item(),
|
||||
grad_norm_st.item()))
|
||||
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
avg_stop_loss += stop_loss.item()
|
||||
|
@ -219,7 +230,7 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
|||
avg_mel_loss = 0
|
||||
avg_stop_loss = 0
|
||||
print(" | > Validation")
|
||||
progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
||||
# progbar = Progbar(len(data_loader.dataset) / c.batch_size)
|
||||
n_priority_freq = int(3000 / (c.sample_rate * 0.5) * c.num_freq)
|
||||
with torch.no_grad():
|
||||
for num_iter, data in enumerate(data_loader):
|
||||
|
@ -262,10 +273,16 @@ def evaluate(model, criterion, criterion_st, data_loader, current_step):
|
|||
epoch_time += step_time
|
||||
|
||||
# update
|
||||
progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
('linear_loss', linear_loss.item()),
|
||||
('mel_loss', mel_loss.item()),
|
||||
('stop_loss', stop_loss.item())])
|
||||
# progbar.update(num_iter+1, values=[('total_loss', loss.item()),
|
||||
# ('linear_loss', linear_loss.item()),
|
||||
# ('mel_loss', mel_loss.item()),
|
||||
# ('stop_loss', stop_loss.item())])
|
||||
if current_step % c.print_step == 0:
|
||||
print(" | | > TotalLoss: {:.5f}\t LinearLoss: {:.5f}\t MelLoss: \
|
||||
{:.5f}\t StopLoss: {:.5f}\t".format(loss.item(),
|
||||
linear_loss.item(),
|
||||
mel_loss.item(),
|
||||
stop_loss.item()))
|
||||
|
||||
avg_linear_loss += linear_loss.item()
|
||||
avg_mel_loss += mel_loss.item()
|
||||
|
@ -405,6 +422,7 @@ def main(args):
|
|||
train_loss, current_step = train(
|
||||
model, criterion, criterion_st, train_loader, optimizer, optimizer_st, epoch)
|
||||
val_loss = evaluate(model, criterion, criterion_st, val_loader, current_step)
|
||||
print(" >>> Train Loss: {:.5f}\t Validation Loss: {:.5f}".format(train_loss, val_loss))
|
||||
best_loss = save_best_model(model, optimizer, val_loss,
|
||||
best_loss, OUT_PATH,
|
||||
current_step, epoch)
|
||||
|
|
Loading…
Reference in New Issue