Ruff autofix E71*

This commit is contained in:
Aarni Koskela 2023-09-27 00:44:08 +03:00
parent 90991e89b4
commit 449820ec7d
8 changed files with 12 additions and 12 deletions

View File

@ -231,7 +231,7 @@ class TTS(nn.Module):
raise ValueError("Model is not multi-speaker but `speaker` is provided.") raise ValueError("Model is not multi-speaker but `speaker` is provided.")
if not self.is_multi_lingual and language is not None: if not self.is_multi_lingual and language is not None:
raise ValueError("Model is not multi-lingual but `language` is provided.") raise ValueError("Model is not multi-lingual but `language` is provided.")
if not emotion is None and not speed is None: if emotion is not None and speed is not None:
raise ValueError("Emotion and speed can only be used with Coqui Studio models. Which is discontinued.") raise ValueError("Emotion and speed can only be used with Coqui Studio models. Which is discontinued.")
def tts( def tts(

View File

@ -34,7 +34,7 @@ class AugmentWAV(object):
# ignore not listed directories # ignore not listed directories
if noise_dir not in self.additive_noise_types: if noise_dir not in self.additive_noise_types:
continue continue
if not noise_dir in self.noise_list: if noise_dir not in self.noise_list:
self.noise_list[noise_dir] = [] self.noise_list[noise_dir] = []
self.noise_list[noise_dir].append(wav_file) self.noise_list[noise_dir].append(wav_file)

View File

@ -415,7 +415,7 @@ class AlignTTS(BaseTTS):
"""Decide AlignTTS training phase""" """Decide AlignTTS training phase"""
if isinstance(config.phase_start_steps, list): if isinstance(config.phase_start_steps, list):
vals = [i < global_step for i in config.phase_start_steps] vals = [i < global_step for i in config.phase_start_steps]
if not True in vals: if True not in vals:
phase = 0 phase = 0
else: else:
phase = ( phase = (

View File

@ -1880,7 +1880,7 @@ class Vits(BaseTTS):
self.forward = _forward self.forward = _forward
if training: if training:
self.train() self.train()
if not disc is None: if disc is not None:
self.disc = disc self.disc = disc
def load_onnx(self, model_path: str, cuda=False): def load_onnx(self, model_path: str, cuda=False):
@ -1914,9 +1914,9 @@ class Vits(BaseTTS):
dtype=np.float32, dtype=np.float32,
) )
input_params = {"input": x, "input_lengths": x_lengths, "scales": scales} input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
if not speaker_id is None: if speaker_id is not None:
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy() input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
if not language_id is None: if language_id is not None:
input_params["langid"] = torch.tensor([language_id]).cpu().numpy() input_params["langid"] = torch.tensor([language_id]).cpu().numpy()
audio = self.onnx_sess.run( audio = self.onnx_sess.run(

View File

@ -516,7 +516,7 @@ class ModelManager(object):
sub_conf[field_names[-1]] = new_path sub_conf[field_names[-1]] = new_path
else: else:
# field name points to a top-level field # field name points to a top-level field
if not field_name in config: if field_name not in config:
return return
if isinstance(config[field_name], list): if isinstance(config[field_name], list):
config[field_name] = [new_path] config[field_name] = [new_path]

View File

@ -164,7 +164,7 @@ class DiscriminatorP(torch.nn.Module):
super(DiscriminatorP, self).__init__() super(DiscriminatorP, self).__init__()
self.period = period self.period = period
self.use_spectral_norm = use_spectral_norm self.use_spectral_norm = use_spectral_norm
norm_f = weight_norm if use_spectral_norm == False else spectral_norm norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList( self.convs = nn.ModuleList(
[ [
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))), norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
@ -201,7 +201,7 @@ class DiscriminatorP(torch.nn.Module):
class DiscriminatorS(torch.nn.Module): class DiscriminatorS(torch.nn.Module):
def __init__(self, use_spectral_norm=False): def __init__(self, use_spectral_norm=False):
super(DiscriminatorS, self).__init__() super(DiscriminatorS, self).__init__()
norm_f = weight_norm if use_spectral_norm == False else spectral_norm norm_f = weight_norm if use_spectral_norm is False else spectral_norm
self.convs = nn.ModuleList( self.convs = nn.ModuleList(
[ [
norm_f(Conv1d(1, 16, 15, 1, padding=7)), norm_f(Conv1d(1, 16, 15, 1, padding=7)),
@ -468,7 +468,7 @@ class FreeVC(BaseVC):
Returns: Returns:
torch.Tensor: Output tensor. torch.Tensor: Output tensor.
""" """
if c_lengths == None: if c_lengths is None:
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device) c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
if not self.use_spk: if not self.use_spk:
g = self.enc_spk.embed_utterance(mel) g = self.enc_spk.embed_utterance(mel)

View File

@ -387,7 +387,7 @@ class ConvFeatureExtractionModel(nn.Module):
nn.init.kaiming_normal_(conv.weight) nn.init.kaiming_normal_(conv.weight)
return conv return conv
assert (is_layer_norm and is_group_norm) == False, "layer norm and group norm are exclusive" assert (is_layer_norm and is_group_norm) is False, "layer norm and group norm are exclusive"
if is_layer_norm: if is_layer_norm:
return nn.Sequential( return nn.Sequential(

View File

@ -298,7 +298,7 @@ class GeneratorLoss(nn.Module):
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss
# Feature Matching Loss # Feature Matching Loss
if self.use_feat_match_loss and not feats_fake is None: if self.use_feat_match_loss and feats_fake is not None:
feat_match_loss = self.feat_match_loss(feats_fake, feats_real) feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
return_dict["G_feat_match_loss"] = feat_match_loss return_dict["G_feat_match_loss"] = feat_match_loss
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss