mirror of https://github.com/coqui-ai/TTS.git
Ruff autofix E71*
This commit is contained in:
parent
90991e89b4
commit
449820ec7d
|
@ -231,7 +231,7 @@ class TTS(nn.Module):
|
||||||
raise ValueError("Model is not multi-speaker but `speaker` is provided.")
|
raise ValueError("Model is not multi-speaker but `speaker` is provided.")
|
||||||
if not self.is_multi_lingual and language is not None:
|
if not self.is_multi_lingual and language is not None:
|
||||||
raise ValueError("Model is not multi-lingual but `language` is provided.")
|
raise ValueError("Model is not multi-lingual but `language` is provided.")
|
||||||
if not emotion is None and not speed is None:
|
if emotion is not None and speed is not None:
|
||||||
raise ValueError("Emotion and speed can only be used with Coqui Studio models. Which is discontinued.")
|
raise ValueError("Emotion and speed can only be used with Coqui Studio models. Which is discontinued.")
|
||||||
|
|
||||||
def tts(
|
def tts(
|
||||||
|
|
|
@ -34,7 +34,7 @@ class AugmentWAV(object):
|
||||||
# ignore not listed directories
|
# ignore not listed directories
|
||||||
if noise_dir not in self.additive_noise_types:
|
if noise_dir not in self.additive_noise_types:
|
||||||
continue
|
continue
|
||||||
if not noise_dir in self.noise_list:
|
if noise_dir not in self.noise_list:
|
||||||
self.noise_list[noise_dir] = []
|
self.noise_list[noise_dir] = []
|
||||||
self.noise_list[noise_dir].append(wav_file)
|
self.noise_list[noise_dir].append(wav_file)
|
||||||
|
|
||||||
|
|
|
@ -415,7 +415,7 @@ class AlignTTS(BaseTTS):
|
||||||
"""Decide AlignTTS training phase"""
|
"""Decide AlignTTS training phase"""
|
||||||
if isinstance(config.phase_start_steps, list):
|
if isinstance(config.phase_start_steps, list):
|
||||||
vals = [i < global_step for i in config.phase_start_steps]
|
vals = [i < global_step for i in config.phase_start_steps]
|
||||||
if not True in vals:
|
if True not in vals:
|
||||||
phase = 0
|
phase = 0
|
||||||
else:
|
else:
|
||||||
phase = (
|
phase = (
|
||||||
|
|
|
@ -1880,7 +1880,7 @@ class Vits(BaseTTS):
|
||||||
self.forward = _forward
|
self.forward = _forward
|
||||||
if training:
|
if training:
|
||||||
self.train()
|
self.train()
|
||||||
if not disc is None:
|
if disc is not None:
|
||||||
self.disc = disc
|
self.disc = disc
|
||||||
|
|
||||||
def load_onnx(self, model_path: str, cuda=False):
|
def load_onnx(self, model_path: str, cuda=False):
|
||||||
|
@ -1914,9 +1914,9 @@ class Vits(BaseTTS):
|
||||||
dtype=np.float32,
|
dtype=np.float32,
|
||||||
)
|
)
|
||||||
input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
|
input_params = {"input": x, "input_lengths": x_lengths, "scales": scales}
|
||||||
if not speaker_id is None:
|
if speaker_id is not None:
|
||||||
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
|
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
|
||||||
if not language_id is None:
|
if language_id is not None:
|
||||||
input_params["langid"] = torch.tensor([language_id]).cpu().numpy()
|
input_params["langid"] = torch.tensor([language_id]).cpu().numpy()
|
||||||
|
|
||||||
audio = self.onnx_sess.run(
|
audio = self.onnx_sess.run(
|
||||||
|
|
|
@ -516,7 +516,7 @@ class ModelManager(object):
|
||||||
sub_conf[field_names[-1]] = new_path
|
sub_conf[field_names[-1]] = new_path
|
||||||
else:
|
else:
|
||||||
# field name points to a top-level field
|
# field name points to a top-level field
|
||||||
if not field_name in config:
|
if field_name not in config:
|
||||||
return
|
return
|
||||||
if isinstance(config[field_name], list):
|
if isinstance(config[field_name], list):
|
||||||
config[field_name] = [new_path]
|
config[field_name] = [new_path]
|
||||||
|
|
|
@ -164,7 +164,7 @@ class DiscriminatorP(torch.nn.Module):
|
||||||
super(DiscriminatorP, self).__init__()
|
super(DiscriminatorP, self).__init__()
|
||||||
self.period = period
|
self.period = period
|
||||||
self.use_spectral_norm = use_spectral_norm
|
self.use_spectral_norm = use_spectral_norm
|
||||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||||
self.convs = nn.ModuleList(
|
self.convs = nn.ModuleList(
|
||||||
[
|
[
|
||||||
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
|
||||||
|
@ -201,7 +201,7 @@ class DiscriminatorP(torch.nn.Module):
|
||||||
class DiscriminatorS(torch.nn.Module):
|
class DiscriminatorS(torch.nn.Module):
|
||||||
def __init__(self, use_spectral_norm=False):
|
def __init__(self, use_spectral_norm=False):
|
||||||
super(DiscriminatorS, self).__init__()
|
super(DiscriminatorS, self).__init__()
|
||||||
norm_f = weight_norm if use_spectral_norm == False else spectral_norm
|
norm_f = weight_norm if use_spectral_norm is False else spectral_norm
|
||||||
self.convs = nn.ModuleList(
|
self.convs = nn.ModuleList(
|
||||||
[
|
[
|
||||||
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
norm_f(Conv1d(1, 16, 15, 1, padding=7)),
|
||||||
|
@ -468,7 +468,7 @@ class FreeVC(BaseVC):
|
||||||
Returns:
|
Returns:
|
||||||
torch.Tensor: Output tensor.
|
torch.Tensor: Output tensor.
|
||||||
"""
|
"""
|
||||||
if c_lengths == None:
|
if c_lengths is None:
|
||||||
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
|
||||||
if not self.use_spk:
|
if not self.use_spk:
|
||||||
g = self.enc_spk.embed_utterance(mel)
|
g = self.enc_spk.embed_utterance(mel)
|
||||||
|
|
|
@ -387,7 +387,7 @@ class ConvFeatureExtractionModel(nn.Module):
|
||||||
nn.init.kaiming_normal_(conv.weight)
|
nn.init.kaiming_normal_(conv.weight)
|
||||||
return conv
|
return conv
|
||||||
|
|
||||||
assert (is_layer_norm and is_group_norm) == False, "layer norm and group norm are exclusive"
|
assert (is_layer_norm and is_group_norm) is False, "layer norm and group norm are exclusive"
|
||||||
|
|
||||||
if is_layer_norm:
|
if is_layer_norm:
|
||||||
return nn.Sequential(
|
return nn.Sequential(
|
||||||
|
|
|
@ -298,7 +298,7 @@ class GeneratorLoss(nn.Module):
|
||||||
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss
|
adv_loss = adv_loss + self.hinge_gan_loss_weight * hinge_fake_loss
|
||||||
|
|
||||||
# Feature Matching Loss
|
# Feature Matching Loss
|
||||||
if self.use_feat_match_loss and not feats_fake is None:
|
if self.use_feat_match_loss and feats_fake is not None:
|
||||||
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
|
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
|
||||||
return_dict["G_feat_match_loss"] = feat_match_loss
|
return_dict["G_feat_match_loss"] = feat_match_loss
|
||||||
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss
|
adv_loss = adv_loss + self.feat_match_loss_weight * feat_match_loss
|
||||||
|
|
Loading…
Reference in New Issue