mirror of https://github.com/coqui-ai/TTS.git
comment out check-arguments before copying fields to the configs
This commit is contained in:
parent
05d9543ed8
commit
4a58fdfd59
|
@ -5,7 +5,6 @@ import re
|
|||
import torch
|
||||
|
||||
from TTS.speaker_encoder.model import SpeakerEncoder
|
||||
from TTS.utils.generic_utils import check_argument
|
||||
|
||||
|
||||
def to_camel(text):
|
||||
|
@ -54,70 +53,71 @@ def save_best_model(model, optimizer, model_loss, best_loss, out_path, current_s
|
|||
|
||||
|
||||
def check_config_speaker_encoder(c):
|
||||
"""Check the config.json file of the speaker encoder"""
|
||||
check_argument("run_name", c, restricted=True, val_type=str)
|
||||
check_argument("run_description", c, val_type=str)
|
||||
...
|
||||
# """Check the config.json file of the speaker encoder"""
|
||||
# check_argument("run_name", c, restricted=True, val_type=str)
|
||||
# check_argument("run_description", c, val_type=str)
|
||||
|
||||
# audio processing parameters
|
||||
check_argument("audio", c, restricted=True, val_type=dict)
|
||||
check_argument("num_mels", c["audio"], restricted=True, val_type=int, min_val=10, max_val=2056)
|
||||
check_argument("fft_size", c["audio"], restricted=True, val_type=int, min_val=128, max_val=4058)
|
||||
check_argument("sample_rate", c["audio"], restricted=True, val_type=int, min_val=512, max_val=100000)
|
||||
check_argument(
|
||||
"frame_length_ms",
|
||||
c["audio"],
|
||||
restricted=True,
|
||||
val_type=float,
|
||||
min_val=10,
|
||||
max_val=1000,
|
||||
alternative="win_length",
|
||||
)
|
||||
check_argument(
|
||||
"frame_shift_ms", c["audio"], restricted=True, val_type=float, min_val=1, max_val=1000, alternative="hop_length"
|
||||
)
|
||||
check_argument("preemphasis", c["audio"], restricted=True, val_type=float, min_val=0, max_val=1)
|
||||
check_argument("min_level_db", c["audio"], restricted=True, val_type=int, min_val=-1000, max_val=10)
|
||||
check_argument("ref_level_db", c["audio"], restricted=True, val_type=int, min_val=0, max_val=1000)
|
||||
check_argument("power", c["audio"], restricted=True, val_type=float, min_val=1, max_val=5)
|
||||
check_argument("griffin_lim_iters", c["audio"], restricted=True, val_type=int, min_val=10, max_val=1000)
|
||||
# # audio processing parameters
|
||||
# check_argument("audio", c, restricted=True, val_type=dict)
|
||||
# check_argument("num_mels", c["audio"], restricted=True, val_type=int, min_val=10, max_val=2056)
|
||||
# check_argument("fft_size", c["audio"], restricted=True, val_type=int, min_val=128, max_val=4058)
|
||||
# check_argument("sample_rate", c["audio"], restricted=True, val_type=int, min_val=512, max_val=100000)
|
||||
# check_argument(
|
||||
# "frame_length_ms",
|
||||
# c["audio"],
|
||||
# restricted=True,
|
||||
# val_type=float,
|
||||
# min_val=10,
|
||||
# max_val=1000,
|
||||
# alternative="win_length",
|
||||
# )
|
||||
# check_argument(
|
||||
# "frame_shift_ms", c["audio"], restricted=True, val_type=float, min_val=1, max_val=1000, alternative="hop_length"
|
||||
# )
|
||||
# check_argument("preemphasis", c["audio"], restricted=True, val_type=float, min_val=0, max_val=1)
|
||||
# check_argument("min_level_db", c["audio"], restricted=True, val_type=int, min_val=-1000, max_val=10)
|
||||
# check_argument("ref_level_db", c["audio"], restricted=True, val_type=int, min_val=0, max_val=1000)
|
||||
# check_argument("power", c["audio"], restricted=True, val_type=float, min_val=1, max_val=5)
|
||||
# check_argument("griffin_lim_iters", c["audio"], restricted=True, val_type=int, min_val=10, max_val=1000)
|
||||
|
||||
# training parameters
|
||||
check_argument("loss", c, enum_list=["ge2e", "angleproto"], restricted=True, val_type=str)
|
||||
check_argument("grad_clip", c, restricted=True, val_type=float)
|
||||
check_argument("epochs", c, restricted=True, val_type=int, min_val=1)
|
||||
check_argument("lr", c, restricted=True, val_type=float, min_val=0)
|
||||
check_argument("lr_decay", c, restricted=True, val_type=bool)
|
||||
check_argument("warmup_steps", c, restricted=True, val_type=int, min_val=0)
|
||||
check_argument("tb_model_param_stats", c, restricted=True, val_type=bool)
|
||||
check_argument("num_speakers_in_batch", c, restricted=True, val_type=int)
|
||||
check_argument("num_loader_workers", c, restricted=True, val_type=int)
|
||||
check_argument("wd", c, restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
# # training parameters
|
||||
# check_argument("loss", c, enum_list=["ge2e", "angleproto"], restricted=True, val_type=str)
|
||||
# check_argument("grad_clip", c, restricted=True, val_type=float)
|
||||
# check_argument("epochs", c, restricted=True, val_type=int, min_val=1)
|
||||
# check_argument("lr", c, restricted=True, val_type=float, min_val=0)
|
||||
# check_argument("lr_decay", c, restricted=True, val_type=bool)
|
||||
# check_argument("warmup_steps", c, restricted=True, val_type=int, min_val=0)
|
||||
# check_argument("tb_model_param_stats", c, restricted=True, val_type=bool)
|
||||
# check_argument("num_speakers_in_batch", c, restricted=True, val_type=int)
|
||||
# check_argument("num_loader_workers", c, restricted=True, val_type=int)
|
||||
# check_argument("wd", c, restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
|
||||
# checkpoint and output parameters
|
||||
check_argument("steps_plot_stats", c, restricted=True, val_type=int)
|
||||
check_argument("checkpoint", c, restricted=True, val_type=bool)
|
||||
check_argument("save_step", c, restricted=True, val_type=int)
|
||||
check_argument("print_step", c, restricted=True, val_type=int)
|
||||
check_argument("output_path", c, restricted=True, val_type=str)
|
||||
# # checkpoint and output parameters
|
||||
# check_argument("steps_plot_stats", c, restricted=True, val_type=int)
|
||||
# check_argument("checkpoint", c, restricted=True, val_type=bool)
|
||||
# check_argument("save_step", c, restricted=True, val_type=int)
|
||||
# check_argument("print_step", c, restricted=True, val_type=int)
|
||||
# check_argument("output_path", c, restricted=True, val_type=str)
|
||||
|
||||
# model parameters
|
||||
check_argument("model", c, restricted=True, val_type=dict)
|
||||
check_argument("input_dim", c["model"], restricted=True, val_type=int)
|
||||
check_argument("proj_dim", c["model"], restricted=True, val_type=int)
|
||||
check_argument("lstm_dim", c["model"], restricted=True, val_type=int)
|
||||
check_argument("num_lstm_layers", c["model"], restricted=True, val_type=int)
|
||||
check_argument("use_lstm_with_projection", c["model"], restricted=True, val_type=bool)
|
||||
# # model parameters
|
||||
# check_argument("model", c, restricted=True, val_type=dict)
|
||||
# check_argument("input_dim", c["model"], restricted=True, val_type=int)
|
||||
# check_argument("proj_dim", c["model"], restricted=True, val_type=int)
|
||||
# check_argument("lstm_dim", c["model"], restricted=True, val_type=int)
|
||||
# check_argument("num_lstm_layers", c["model"], restricted=True, val_type=int)
|
||||
# check_argument("use_lstm_with_projection", c["model"], restricted=True, val_type=bool)
|
||||
|
||||
# in-memory storage parameters
|
||||
check_argument("storage", c, restricted=True, val_type=dict)
|
||||
check_argument("sample_from_storage_p", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
check_argument("storage_size", c["storage"], restricted=True, val_type=int, min_val=1, max_val=100)
|
||||
check_argument("additive_noise", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
# # in-memory storage parameters
|
||||
# check_argument("storage", c, restricted=True, val_type=dict)
|
||||
# check_argument("sample_from_storage_p", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
# check_argument("storage_size", c["storage"], restricted=True, val_type=int, min_val=1, max_val=100)
|
||||
# check_argument("additive_noise", c["storage"], restricted=True, val_type=float, min_val=0.0, max_val=1.0)
|
||||
|
||||
# datasets - checking only the first entry
|
||||
check_argument("datasets", c, restricted=True, val_type=list)
|
||||
for dataset_entry in c["datasets"]:
|
||||
check_argument("name", dataset_entry, restricted=True, val_type=str)
|
||||
check_argument("path", dataset_entry, restricted=True, val_type=str)
|
||||
check_argument("meta_file_train", dataset_entry, restricted=True, val_type=[str, list])
|
||||
check_argument("meta_file_val", dataset_entry, restricted=True, val_type=str)
|
||||
# # datasets - checking only the first entry
|
||||
# check_argument("datasets", c, restricted=True, val_type=list)
|
||||
# for dataset_entry in c["datasets"]:
|
||||
# check_argument("name", dataset_entry, restricted=True, val_type=str)
|
||||
# check_argument("path", dataset_entry, restricted=True, val_type=str)
|
||||
# check_argument("meta_file_train", dataset_entry, restricted=True, val_type=[str, list])
|
||||
# check_argument("meta_file_val", dataset_entry, restricted=True, val_type=str)
|
||||
|
|
Loading…
Reference in New Issue