mirror of https://github.com/coqui-ai/TTS.git
update hifigan config
This commit is contained in:
parent
e0e3b12b26
commit
4a5b1d4ac2
|
@ -11,12 +11,13 @@
|
|||
"frame_shift_ms": null, // stft window hop-lengh in ms. If null, 'hop_length' is used.
|
||||
|
||||
// Audio processing parameters
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"sample_rate": 16000, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"preemphasis": 0.0, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"ref_level_db": 0, // reference level db, theoretically 20db is the sound of air.
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"log_func": "np.log",
|
||||
|
||||
// Silence trimming
|
||||
"do_trim_silence": true,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"do_trim_silence": false,// enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
"trim_db": 60, // threshold for timming silence. Set this according to your dataset.
|
||||
|
||||
// MelSpectrogram parameters
|
||||
|
@ -26,7 +27,7 @@
|
|||
"spec_gain": 1.0, // scaler value appplied after log transform of spectrogram.
|
||||
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"signal_norm": false, // normalize spec values. Mean-Var normalization if 'stats_path' is defined otherwise range normalization defined by the other params.
|
||||
"min_level_db": -100, // lower bound for normalization
|
||||
"symmetric_norm": true, // move normalization to range [-1, 1]
|
||||
"max_norm": 4.0, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
|
@ -44,24 +45,37 @@
|
|||
"use_pqmf": false,
|
||||
|
||||
// LOSS PARAMETERS
|
||||
"use_stft_loss": true,
|
||||
"use_stft_loss": false,
|
||||
"use_subband_stft_loss": false,
|
||||
"use_mse_gan_loss": true,
|
||||
"use_hinge_gan_loss": false,
|
||||
"use_feat_match_loss": true, // use only with melgan discriminators
|
||||
"use_l1_spec_loss": true,
|
||||
|
||||
// loss weights
|
||||
"stft_loss_weight": 45,
|
||||
"stft_loss_weight": 0,
|
||||
"subband_stft_loss_weight": 0,
|
||||
"mse_G_loss_weight": 1,
|
||||
"hinge_G_loss_weight": 0,
|
||||
"feat_match_loss_weight": 10,
|
||||
"l1_spec_loss_weight": 45,
|
||||
|
||||
// multiscale stft loss parameters
|
||||
"stft_loss_params": {
|
||||
"n_ffts": [1024, 2048, 512],
|
||||
"hop_lengths": [120, 240, 50],
|
||||
"win_lengths": [600, 1200, 240]
|
||||
// "stft_loss_params": {
|
||||
// "n_ffts": [1024, 2048, 512],
|
||||
// "hop_lengths": [120, 240, 50],
|
||||
// "win_lengths": [600, 1200, 240]
|
||||
// },
|
||||
|
||||
"l1_spec_loss_params": {
|
||||
"use_mel": true,
|
||||
"sample_rate": 16000,
|
||||
"n_fft": 1024,
|
||||
"hop_length": 256,
|
||||
"win_length": 1024,
|
||||
"n_mels": 80,
|
||||
"mel_fmin": 0.0,
|
||||
"mel_fmax": null
|
||||
},
|
||||
|
||||
"target_loss": "avg_G_loss", // loss value to pick the best model to save after each epoch
|
||||
|
@ -89,8 +103,9 @@
|
|||
|
||||
// DATASET
|
||||
"data_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/vo_voice_quality_transformation/",
|
||||
"feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/",
|
||||
"seq_len": 16384,
|
||||
"feature_path": null,
|
||||
// "feature_path": "/home/erogol/gdrive/Datasets/non-binary-voice-files/tacotron-DCA/",
|
||||
"seq_len": 8192,
|
||||
"pad_short": 2000,
|
||||
"conv_pad": 0,
|
||||
"use_noise_augment": false,
|
||||
|
|
Loading…
Reference in New Issue