diff --git a/TTS/bin/tune_wavegrad.py b/TTS/bin/tune_wavegrad.py index fde521c5..7461282d 100644 --- a/TTS/bin/tune_wavegrad.py +++ b/TTS/bin/tune_wavegrad.py @@ -34,7 +34,7 @@ _, train_data = load_wav_data(args.data_path, 0) train_data = train_data[:args.num_samples] dataset = WaveGradDataset(ap=ap, items=train_data, - seq_len=ap.hop_length * 100, + seq_len=-1, hop_len=ap.hop_length, pad_short=config.pad_short, conv_pad=config.conv_pad, @@ -58,8 +58,9 @@ if args.use_cuda: model.cuda() # setup optimization parameters -base_values = sorted(np.random.uniform(high=10, size=args.search_depth)) -exponents = 10 ** np.linspace(-6, -2, num=args.num_iter) +base_values = sorted(10 * np.random.uniform(size=args.search_depth)) +print(base_values) +exponents = 10 ** np.linspace(-6, -1, num=args.num_iter) best_error = float('inf') best_schedule = None total_search_iter = len(base_values)**args.num_iter diff --git a/TTS/vocoder/models/wavegrad.py b/TTS/vocoder/models/wavegrad.py index f9bcdb85..18562d10 100644 --- a/TTS/vocoder/models/wavegrad.py +++ b/TTS/vocoder/models/wavegrad.py @@ -119,6 +119,7 @@ class Wavegrad(nn.Module): alpha = 1 - beta alpha_hat = np.cumprod(alpha) noise_level = np.concatenate([[1.0], alpha_hat ** 0.5], axis=0) + noise_level = alpha_hat ** 0.5 # pylint: disable=not-callable self.beta = torch.tensor(beta.astype(np.float32))