chore(tortoise): remove unused AudioMiniEncoder

There's one in tortoise.classifier that's actually used
This commit is contained in:
Enno Hermann 2024-11-21 12:28:03 +01:00
parent 66701e1e51
commit 4ba83f42ab
1 changed files with 0 additions and 108 deletions

View File

@ -185,114 +185,6 @@ class Downsample(nn.Module):
return self.op(x) return self.op(x)
class ResBlock(nn.Module):
def __init__(
self,
channels,
dropout,
out_channels=None,
use_conv=False,
use_scale_shift_norm=False,
up=False,
down=False,
kernel_size=3,
):
super().__init__()
self.channels = channels
self.dropout = dropout
self.out_channels = out_channels or channels
self.use_conv = use_conv
self.use_scale_shift_norm = use_scale_shift_norm
padding = 1 if kernel_size == 3 else 2
self.in_layers = nn.Sequential(
normalization(channels),
nn.SiLU(),
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding),
)
self.updown = up or down
if up:
self.h_upd = Upsample(channels, False)
self.x_upd = Upsample(channels, False)
elif down:
self.h_upd = Downsample(channels, False)
self.x_upd = Downsample(channels, False)
else:
self.h_upd = self.x_upd = nn.Identity()
self.out_layers = nn.Sequential(
normalization(self.out_channels),
nn.SiLU(),
nn.Dropout(p=dropout),
zero_module(nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)),
)
if self.out_channels == channels:
self.skip_connection = nn.Identity()
elif use_conv:
self.skip_connection = nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding)
else:
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1)
def forward(self, x):
if self.updown:
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
h = in_rest(x)
h = self.h_upd(h)
x = self.x_upd(x)
h = in_conv(h)
else:
h = self.in_layers(x)
h = self.out_layers(h)
return self.skip_connection(x) + h
class AudioMiniEncoder(nn.Module):
def __init__(
self,
spec_dim,
embedding_dim,
base_channels=128,
depth=2,
resnet_blocks=2,
attn_blocks=4,
num_attn_heads=4,
dropout=0,
downsample_factor=2,
kernel_size=3,
):
super().__init__()
self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1))
ch = base_channels
res = []
for l in range(depth):
for r in range(resnet_blocks):
res.append(ResBlock(ch, dropout, kernel_size=kernel_size))
res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor))
ch *= 2
self.res = nn.Sequential(*res)
self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1))
attn = []
for a in range(attn_blocks):
attn.append(
AttentionBlock(
embedding_dim,
num_attn_heads,
)
)
self.attn = nn.Sequential(*attn)
self.dim = embedding_dim
def forward(self, x):
h = self.init(x)
h = self.res(h)
h = self.final(h)
h = self.attn(h)
return h[:, :, 0]
DEFAULT_MEL_NORM_FILE = "https://github.com/coqui-ai/TTS/releases/download/v0.14.1_models/mel_norms.pth" DEFAULT_MEL_NORM_FILE = "https://github.com/coqui-ai/TTS/releases/download/v0.14.1_models/mel_norms.pth"