mirror of https://github.com/coqui-ai/TTS.git
chore(tortoise): remove unused AudioMiniEncoder
There's one in tortoise.classifier that's actually used
This commit is contained in:
parent
66701e1e51
commit
4ba83f42ab
|
@ -185,114 +185,6 @@ class Downsample(nn.Module):
|
|||
return self.op(x)
|
||||
|
||||
|
||||
class ResBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
channels,
|
||||
dropout,
|
||||
out_channels=None,
|
||||
use_conv=False,
|
||||
use_scale_shift_norm=False,
|
||||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.dropout = dropout
|
||||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
normalization(channels),
|
||||
nn.SiLU(),
|
||||
nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding),
|
||||
)
|
||||
|
||||
self.updown = up or down
|
||||
|
||||
if up:
|
||||
self.h_upd = Upsample(channels, False)
|
||||
self.x_upd = Upsample(channels, False)
|
||||
elif down:
|
||||
self.h_upd = Downsample(channels, False)
|
||||
self.x_upd = Downsample(channels, False)
|
||||
else:
|
||||
self.h_upd = self.x_upd = nn.Identity()
|
||||
|
||||
self.out_layers = nn.Sequential(
|
||||
normalization(self.out_channels),
|
||||
nn.SiLU(),
|
||||
nn.Dropout(p=dropout),
|
||||
zero_module(nn.Conv1d(self.out_channels, self.out_channels, kernel_size, padding=padding)),
|
||||
)
|
||||
|
||||
if self.out_channels == channels:
|
||||
self.skip_connection = nn.Identity()
|
||||
elif use_conv:
|
||||
self.skip_connection = nn.Conv1d(channels, self.out_channels, kernel_size, padding=padding)
|
||||
else:
|
||||
self.skip_connection = nn.Conv1d(channels, self.out_channels, 1)
|
||||
|
||||
def forward(self, x):
|
||||
if self.updown:
|
||||
in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1]
|
||||
h = in_rest(x)
|
||||
h = self.h_upd(h)
|
||||
x = self.x_upd(x)
|
||||
h = in_conv(h)
|
||||
else:
|
||||
h = self.in_layers(x)
|
||||
h = self.out_layers(h)
|
||||
return self.skip_connection(x) + h
|
||||
|
||||
|
||||
class AudioMiniEncoder(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
spec_dim,
|
||||
embedding_dim,
|
||||
base_channels=128,
|
||||
depth=2,
|
||||
resnet_blocks=2,
|
||||
attn_blocks=4,
|
||||
num_attn_heads=4,
|
||||
dropout=0,
|
||||
downsample_factor=2,
|
||||
kernel_size=3,
|
||||
):
|
||||
super().__init__()
|
||||
self.init = nn.Sequential(nn.Conv1d(spec_dim, base_channels, 3, padding=1))
|
||||
ch = base_channels
|
||||
res = []
|
||||
for l in range(depth):
|
||||
for r in range(resnet_blocks):
|
||||
res.append(ResBlock(ch, dropout, kernel_size=kernel_size))
|
||||
res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor))
|
||||
ch *= 2
|
||||
self.res = nn.Sequential(*res)
|
||||
self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1))
|
||||
attn = []
|
||||
for a in range(attn_blocks):
|
||||
attn.append(
|
||||
AttentionBlock(
|
||||
embedding_dim,
|
||||
num_attn_heads,
|
||||
)
|
||||
)
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
|
||||
def forward(self, x):
|
||||
h = self.init(x)
|
||||
h = self.res(h)
|
||||
h = self.final(h)
|
||||
h = self.attn(h)
|
||||
return h[:, :, 0]
|
||||
|
||||
|
||||
DEFAULT_MEL_NORM_FILE = "https://github.com/coqui-ai/TTS/releases/download/v0.14.1_models/mel_norms.pth"
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue