mirror of https://github.com/coqui-ai/TTS.git
Tortoise inference fix and fix zoo unit tests (#3010)
This commit is contained in:
parent
bb05dcb9b4
commit
4c3c11c958
|
@ -0,0 +1,52 @@
|
|||
name: zoo-tests-tortoise
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- main
|
||||
pull_request:
|
||||
types: [opened, synchronize, reopened]
|
||||
jobs:
|
||||
check_skip:
|
||||
runs-on: ubuntu-latest
|
||||
if: "! contains(github.event.head_commit.message, '[ci skip]')"
|
||||
steps:
|
||||
- run: echo "${{ github.event.head_commit.message }}"
|
||||
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
fail-fast: false
|
||||
matrix:
|
||||
python-version: [3.9, "3.10", "3.11"]
|
||||
experimental: [false]
|
||||
steps:
|
||||
- uses: actions/checkout@v3
|
||||
- name: Set up Python ${{ matrix.python-version }}
|
||||
uses: actions/setup-python@v4
|
||||
with:
|
||||
python-version: ${{ matrix.python-version }}
|
||||
architecture: x64
|
||||
cache: 'pip'
|
||||
cache-dependency-path: 'requirements*'
|
||||
- name: check OS
|
||||
run: cat /etc/os-release
|
||||
- name: set ENV
|
||||
run: export TRAINER_TELEMETRY=0
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
sudo apt-get update
|
||||
sudo apt-get install -y git make gcc
|
||||
sudo apt-get install espeak espeak-ng
|
||||
make system-deps
|
||||
- name: Install/upgrade Python setup deps
|
||||
run: python3 -m pip install --upgrade pip setuptools wheel
|
||||
- name: Replace scarf urls
|
||||
run: |
|
||||
sed -i 's/https:\/\/coqui.gateway.scarf.sh\//https:\/\/github.com\/coqui-ai\/TTS\/releases\/download\//g' TTS/.models.json
|
||||
- name: Install TTS
|
||||
run: |
|
||||
python3 -m pip install .[all]
|
||||
python3 setup.py egg_info
|
||||
- name: Unit tests
|
||||
run: nose2 -F -v -B --with-coverage --coverage TTS tests.zoo_tests.test_models.test_tortoise
|
|
@ -5,9 +5,13 @@ from tokenizers import Tokenizer
|
|||
|
||||
from TTS.tts.utils.text.cleaners import english_cleaners
|
||||
|
||||
DEFAULT_VOCAB_FILE = os.path.join(
|
||||
os.path.dirname(os.path.realpath(__file__)), "../../utils/assets/tortoise/tokenizer.json"
|
||||
)
|
||||
|
||||
|
||||
class VoiceBpeTokenizer:
|
||||
def __init__(self, vocab_file=None, vocab_str=None):
|
||||
def __init__(self, vocab_file=DEFAULT_VOCAB_FILE, vocab_str=None):
|
||||
self.tokenizer = None
|
||||
if vocab_file is not None:
|
||||
self.tokenizer = Tokenizer.from_file(vocab_file)
|
||||
|
|
|
@ -1,658 +0,0 @@
|
|||
import functools
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
from transformers import GPT2Config, GPT2Model, GPT2PreTrainedModel
|
||||
from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions
|
||||
|
||||
|
||||
def null_position_embeddings(range, dim):
|
||||
return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device)
|
||||
|
||||
|
||||
class GPT2InferenceModel(GPT2PreTrainedModel):
|
||||
"""Override GPT2LMHeadModel to allow for prefix conditioning."""
|
||||
|
||||
def __init__(self, config, gpt, pos_emb, embeddings, norm, linear, kv_cache):
|
||||
super().__init__(config)
|
||||
self.transformer = gpt
|
||||
self.pos_embedding = pos_emb
|
||||
self.embeddings = embeddings
|
||||
self.final_norm = norm
|
||||
self.lm_head = nn.Sequential(norm, linear)
|
||||
self.kv_cache = kv_cache
|
||||
|
||||
def store_prefix_emb(self, prefix_emb):
|
||||
self.cached_prefix_emb = prefix_emb
|
||||
|
||||
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs):
|
||||
token_type_ids = kwargs.get("token_type_ids", None) # usually None
|
||||
if not self.kv_cache:
|
||||
past_key_values = None
|
||||
|
||||
# only last token for inputs_ids if past is defined in kwargs
|
||||
if past_key_values is not None:
|
||||
input_ids = input_ids[:, -1].unsqueeze(-1)
|
||||
if token_type_ids is not None:
|
||||
token_type_ids = token_type_ids[:, -1].unsqueeze(-1)
|
||||
|
||||
attention_mask = kwargs.get("attention_mask", None)
|
||||
position_ids = kwargs.get("position_ids", None)
|
||||
|
||||
if attention_mask is not None and position_ids is None:
|
||||
# create position_ids on the fly for batch generation
|
||||
position_ids = attention_mask.long().cumsum(-1) - 1
|
||||
position_ids.masked_fill_(attention_mask == 0, 1)
|
||||
if past_key_values is not None:
|
||||
position_ids = position_ids[:, -1].unsqueeze(-1)
|
||||
else:
|
||||
position_ids = None
|
||||
return {
|
||||
"input_ids": input_ids,
|
||||
"past_key_values": past_key_values,
|
||||
"use_cache": kwargs.get("use_cache"),
|
||||
"position_ids": position_ids,
|
||||
"attention_mask": attention_mask,
|
||||
"token_type_ids": token_type_ids,
|
||||
}
|
||||
|
||||
def forward(
|
||||
self,
|
||||
input_ids=None,
|
||||
past_key_values=None,
|
||||
attention_mask=None,
|
||||
token_type_ids=None,
|
||||
position_ids=None,
|
||||
head_mask=None,
|
||||
inputs_embeds=None,
|
||||
encoder_hidden_states=None,
|
||||
encoder_attention_mask=None,
|
||||
labels=None,
|
||||
use_cache=None,
|
||||
output_attentions=None,
|
||||
output_hidden_states=None,
|
||||
return_dict=None,
|
||||
):
|
||||
assert self.cached_prefix_emb is not None
|
||||
assert inputs_embeds is None # Not supported by this inference model.
|
||||
assert labels is None # Training not supported by this inference model.
|
||||
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
||||
|
||||
# assert len(past_key_values) + len(input_ids) == attention_mask.shape[1]
|
||||
|
||||
# Create embedding
|
||||
prefix_len = self.cached_prefix_emb.shape[1]
|
||||
if input_ids.shape[1] != 1:
|
||||
gen_inputs = input_ids[:, prefix_len:]
|
||||
gen_emb = self.embeddings(gen_inputs)
|
||||
gen_emb = gen_emb + self.pos_embedding(gen_emb)
|
||||
if self.cached_prefix_emb.shape[0] != gen_emb.shape[0]:
|
||||
prefix_emb = self.cached_prefix_emb.repeat_interleave(
|
||||
gen_emb.shape[0] // self.cached_prefix_emb.shape[0], 0
|
||||
)
|
||||
else:
|
||||
prefix_emb = self.cached_prefix_emb.to(gen_emb.dtype)
|
||||
emb = torch.cat([prefix_emb, gen_emb], dim=1)
|
||||
else:
|
||||
emb = self.embeddings(input_ids)
|
||||
emb = emb + self.pos_embedding.get_fixed_embedding(
|
||||
attention_mask.shape[1] - (prefix_len + 1), attention_mask.device
|
||||
)
|
||||
transformer_outputs = self.transformer(
|
||||
inputs_embeds=emb,
|
||||
past_key_values=past_key_values,
|
||||
attention_mask=attention_mask,
|
||||
token_type_ids=token_type_ids,
|
||||
position_ids=position_ids,
|
||||
head_mask=head_mask,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_attention_mask=encoder_attention_mask,
|
||||
use_cache=use_cache,
|
||||
output_attentions=output_attentions,
|
||||
output_hidden_states=output_hidden_states,
|
||||
return_dict=return_dict,
|
||||
)
|
||||
hidden_states = transformer_outputs[0]
|
||||
lm_logits = self.lm_head(hidden_states)
|
||||
|
||||
if not return_dict:
|
||||
return (lm_logits,) + transformer_outputs[1:]
|
||||
|
||||
return CausalLMOutputWithCrossAttentions(
|
||||
loss=None,
|
||||
logits=lm_logits,
|
||||
past_key_values=transformer_outputs.past_key_values,
|
||||
hidden_states=transformer_outputs.hidden_states,
|
||||
attentions=transformer_outputs.attentions,
|
||||
cross_attentions=transformer_outputs.cross_attentions,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _reorder_cache(past, beam_idx):
|
||||
"""
|
||||
This function is used to re-order the :obj:`past_key_values` cache if
|
||||
:meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is
|
||||
called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step.
|
||||
"""
|
||||
return tuple(
|
||||
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
||||
for layer_past in past
|
||||
)
|
||||
|
||||
|
||||
class LearnedPositionEmbeddings(nn.Module):
|
||||
def __init__(self, seq_len, model_channels, init_std=0.02, relative=False):
|
||||
super().__init__()
|
||||
self.emb = nn.Embedding(seq_len, model_channels)
|
||||
nn.init.normal_(self.emb.weight, mean=0.0, std=init_std)
|
||||
self.relative = relative
|
||||
|
||||
def forward(self, x):
|
||||
seq_len = x.shape[1]
|
||||
if self.relative:
|
||||
start = torch.randint(seq_len, (1,), device=x.device).item()
|
||||
positions = torch.arange(start, start + seq_len, device=x.device)
|
||||
else:
|
||||
positions = torch.arange(seq_len, device=x.device)
|
||||
return self.emb(positions)
|
||||
|
||||
def get_fixed_embedding(self, ind, dev):
|
||||
return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0)
|
||||
|
||||
|
||||
def init_gpt(layers, model_channels, heads, max_mel_seq_len, max_text_seq_len, max_prompt_len, checkpointing):
|
||||
"""
|
||||
Initializes a GPT-2 model and its position embeddings for a text-to-speech system.
|
||||
|
||||
Args:
|
||||
layers (int): Number of layers in the GPT-2 model.
|
||||
model_channels (int): Dimension of the GPT-2 model.
|
||||
heads (int): Number of heads in the GPT-2 model.
|
||||
max_mel_seq_len (int): Maximum sequence length for the mel spectrogram.
|
||||
max_text_seq_len (int): Maximum sequence length for the text.
|
||||
max_prompt_len (int): Maximum length of the prompt.
|
||||
checkpointing (bool): Whether to use gradient checkpointing.
|
||||
|
||||
Returns:
|
||||
gpt (GPT2Model): GPT-2 model.
|
||||
mel_pos_emb (LearnedPositionEmbeddings): Position embeddings for the mel spectrogram.
|
||||
text_pos_emb (LearnedPositionEmbeddings): Position embeddings for the text.
|
||||
"""
|
||||
gpt_config = GPT2Config(
|
||||
vocab_size=123,
|
||||
n_positions=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
||||
n_ctx=max_mel_seq_len + max_text_seq_len + max_prompt_len,
|
||||
n_embd=model_channels,
|
||||
n_layer=layers,
|
||||
n_head=heads,
|
||||
gradient_checkpointing=checkpointing,
|
||||
use_cache=not checkpointing,
|
||||
)
|
||||
gpt = GPT2Model(gpt_config)
|
||||
|
||||
del gpt.wpe
|
||||
del gpt.wte
|
||||
|
||||
gpt.wpe = functools.partial(null_position_embeddings, dim=model_channels)
|
||||
|
||||
audio_pos_emb = (
|
||||
LearnedPositionEmbeddings(max_mel_seq_len, model_channels)
|
||||
if max_mel_seq_len != -1
|
||||
else functools.partial(null_position_embeddings, dim=model_channels)
|
||||
)
|
||||
text_pos_emb = (
|
||||
LearnedPositionEmbeddings(max_text_seq_len, model_channels)
|
||||
if max_mel_seq_len != -1
|
||||
else functools.partial(null_position_embeddings, dim=model_channels)
|
||||
)
|
||||
|
||||
return gpt, audio_pos_emb, text_pos_emb
|
||||
|
||||
|
||||
class XTTSGPTEncoder(nn.Module):
|
||||
"""XTTS GPT Encoder model implementation.
|
||||
Args:
|
||||
start_text_token (int): Index of the start token in the text vocabulary.
|
||||
stop_text_token (int): Index of the stop token in the text vocabulary.
|
||||
n_layers (int): Number of layers in the GPT-2 model.
|
||||
n_model_channels (int): Dimension of the GPT-2 model.
|
||||
n_heads (int): Number of heads in the GPT-2 model.
|
||||
max_text_tokens (int): Maximum number of text tokens.
|
||||
max_audio_tokens (int): Maximum number of audio tokens.
|
||||
max_prompt_tokens (int): Maximum number of prompt tokens.
|
||||
audio_len_compression (int): Compression factor for the audio length.
|
||||
number_text_tokens (int): Number of text tokens.
|
||||
number_audio_codes (int): Number of audio codes.
|
||||
start_mel_token (int): Index of the start token in the mel code vocabulary.
|
||||
stop_mel_token (int): Index of the stop token in the mel code vocabulary.
|
||||
checkpointing (bool): Whether or not to use gradient checkpointing at training.
|
||||
"""
|
||||
|
||||
_inference_flag = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
start_text_token=261,
|
||||
stop_text_token=0,
|
||||
n_layers=8,
|
||||
n_model_channels=512,
|
||||
n_heads=8,
|
||||
max_text_tokens=120,
|
||||
max_audio_tokens=250,
|
||||
max_prompt_tokens=70,
|
||||
audio_len_compression=1024,
|
||||
number_text_tokens=256,
|
||||
number_audio_codes=8194,
|
||||
start_mel_token=8192,
|
||||
stop_mel_token=8193,
|
||||
checkpointing=True,
|
||||
label_smoothing=0.0,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.label_smoothing = label_smoothing
|
||||
self.number_text_tokens = number_text_tokens
|
||||
self.start_text_token = start_text_token
|
||||
self.stop_text_token = stop_text_token
|
||||
self.number_audio_codes = number_audio_codes
|
||||
self.start_mel_token = start_mel_token
|
||||
self.stop_mel_token = stop_mel_token
|
||||
self.start_prompt_token = start_mel_token
|
||||
self.stop_prompt_token = stop_mel_token
|
||||
self.n_layers = n_layers
|
||||
self.n_heads = n_heads
|
||||
self.n_model_channels = n_model_channels
|
||||
self.max_audio_tokens = -1 if max_audio_tokens == -1 else max_audio_tokens + 2 + self.max_conditioning_inputs
|
||||
self.max_text_tokens = -1 if max_text_tokens == -1 else max_text_tokens + 2
|
||||
self.max_prompt_tokens = max_prompt_tokens
|
||||
self.audio_len_compression = audio_len_compression
|
||||
|
||||
# embedding layers
|
||||
self.text_embedding = nn.Embedding(self.number_text_tokens, n_model_channels)
|
||||
self.audio_embedding = nn.Embedding(self.number_audio_codes, n_model_channels)
|
||||
self.prompt_embedding = nn.Embedding(self.number_audio_codes, n_model_channels)
|
||||
self.prompt_pos_embedding = LearnedPositionEmbeddings(24 * 9, n_model_channels)
|
||||
|
||||
# initialize the GPT-2 model
|
||||
(
|
||||
self.gpt,
|
||||
self.audio_pos_embedding,
|
||||
self.text_pos_embedding,
|
||||
) = init_gpt(
|
||||
n_layers,
|
||||
n_model_channels,
|
||||
n_heads,
|
||||
self.max_audio_tokens,
|
||||
self.max_text_tokens,
|
||||
self.max_prompt_tokens,
|
||||
checkpointing,
|
||||
)
|
||||
|
||||
# output layers
|
||||
self.final_norm = nn.LayerNorm(n_model_channels)
|
||||
self.text_head = nn.Linear(n_model_channels, self.number_text_tokens)
|
||||
self.mel_head = nn.Linear(n_model_channels, self.number_audio_codes)
|
||||
|
||||
def get_grad_norm_parameter_groups(self):
|
||||
return {
|
||||
"conditioning_encoder": list(self.conditioning_encoder.parameters()),
|
||||
"gpt": list(self.gpt.parameters()),
|
||||
"heads": list(self.text_head.parameters()) + list(self.mel_head.parameters()),
|
||||
}
|
||||
|
||||
def init_model_for_inference(self, kv_cache=True, use_deepspeed=False, use_deepspeed_f16=False):
|
||||
self._inference_flag = True
|
||||
seq_length = self.max_prompt_tokens + self.max_audio_tokens + self.max_text_tokens
|
||||
gpt_config = GPT2Config(
|
||||
vocab_size=self.max_audio_tokens,
|
||||
n_positions=seq_length,
|
||||
n_ctx=seq_length,
|
||||
n_embd=self.n_model_channels,
|
||||
n_layer=self.n_layers,
|
||||
n_head=self.n_heads,
|
||||
gradient_checkpointing=False,
|
||||
use_cache=True,
|
||||
)
|
||||
self.inference_model = GPT2InferenceModel(
|
||||
gpt_config,
|
||||
self.gpt,
|
||||
self.audio_pos_embedding,
|
||||
self.audio_embedding,
|
||||
self.final_norm,
|
||||
self.mel_head,
|
||||
kv_cache=kv_cache,
|
||||
)
|
||||
self.gpt.wte = self.audio_embedding
|
||||
|
||||
def set_inputs_and_targets(self, input, start_token, stop_token):
|
||||
inp = F.pad(input, (1, 0), value=start_token)
|
||||
tar = F.pad(input, (0, 1), value=stop_token)
|
||||
return inp, tar
|
||||
|
||||
def set_audio_tokens_padding(self, audio_tokens, audio_token_lens):
|
||||
# Set padding areas within MEL (currently it is coded with the MEL code for <zero>).
|
||||
for b in range(len(audio_token_lens)):
|
||||
actual_end = audio_token_lens[b]
|
||||
if actual_end < audio_tokens.shape[-1]:
|
||||
audio_tokens[b, actual_end:] = self.stop_mel_token
|
||||
return audio_tokens
|
||||
|
||||
def get_logits(
|
||||
self,
|
||||
speech_conditioning_inputs,
|
||||
first_inputs,
|
||||
first_head,
|
||||
second_inputs=None,
|
||||
second_head=None,
|
||||
prompt=None,
|
||||
get_attns=False,
|
||||
return_latent=False,
|
||||
attn_mask_text=None,
|
||||
attn_mask_mel=None,
|
||||
):
|
||||
if prompt is not None and speech_conditioning_inputs is not None:
|
||||
offset = speech_conditioning_inputs.shape[1] + prompt.shape[1]
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat(
|
||||
[speech_conditioning_inputs, prompt, first_inputs, second_inputs],
|
||||
dim=1,
|
||||
)
|
||||
else:
|
||||
emb = torch.cat([speech_conditioning_inputs, prompt, first_inputs], dim=1)
|
||||
elif speech_conditioning_inputs is not None:
|
||||
offset = speech_conditioning_inputs.shape[1]
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1)
|
||||
else:
|
||||
emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1)
|
||||
elif prompt is not None:
|
||||
offset = prompt.shape[1]
|
||||
if second_inputs is not None:
|
||||
emb = torch.cat([prompt, first_inputs, second_inputs], dim=1)
|
||||
else:
|
||||
emb = torch.cat([prompt, first_inputs], dim=1)
|
||||
|
||||
# with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
|
||||
attn_mask = None
|
||||
if attn_mask_text is not None:
|
||||
attn_mask = torch.cat([attn_mask_text, attn_mask_mel], dim=1)
|
||||
if prompt is not None:
|
||||
attn_mask_prompt = torch.ones(prompt.shape[0], offset, dtype=torch.bool, device=emb.device)
|
||||
attn_mask = torch.cat([attn_mask_prompt, attn_mask], dim=1)
|
||||
|
||||
gpt_out = self.gpt(
|
||||
inputs_embeds=emb,
|
||||
return_dict=True,
|
||||
output_attentions=get_attns,
|
||||
attention_mask=attn_mask,
|
||||
)
|
||||
|
||||
if get_attns:
|
||||
return gpt_out.attentions
|
||||
|
||||
enc = gpt_out.last_hidden_state[:, offset:]
|
||||
enc = self.final_norm(enc)
|
||||
|
||||
if return_latent:
|
||||
return enc[:, : first_inputs.shape[1]], enc[:, -second_inputs.shape[1] :]
|
||||
|
||||
first_logits = enc[:, : first_inputs.shape[1]]
|
||||
first_logits = first_head(first_logits)
|
||||
first_logits = first_logits.permute(0, 2, 1)
|
||||
if second_inputs is not None:
|
||||
second_logits = enc[:, -second_inputs.shape[1] :]
|
||||
second_logits = second_head(second_logits)
|
||||
second_logits = second_logits.permute(0, 2, 1)
|
||||
return first_logits, second_logits
|
||||
else:
|
||||
return first_logits
|
||||
|
||||
def get_conditioning(self, speech_conditioning_input):
|
||||
speech_conditioning_input = (
|
||||
speech_conditioning_input.unsqueeze(1)
|
||||
if len(speech_conditioning_input.shape) == 3
|
||||
else speech_conditioning_input
|
||||
)
|
||||
conds = []
|
||||
for j in range(speech_conditioning_input.shape[1]):
|
||||
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
||||
conds = torch.stack(conds, dim=1)
|
||||
conds = conds.mean(dim=1)
|
||||
return conds
|
||||
|
||||
def get_prompts(self, prompt_codes):
|
||||
prompt = F.pad(prompt_codes, (1, 0), value=self.start_prompt_token)
|
||||
prompt = F.pad(prompt_codes, (0, 1), value=self.stop_prompt_token)
|
||||
return prompt
|
||||
|
||||
def forward(
|
||||
self,
|
||||
text_inputs,
|
||||
text_lengths,
|
||||
audio_codes,
|
||||
wav_lengths,
|
||||
prompt_codes,
|
||||
return_attentions=False,
|
||||
return_latent=False,
|
||||
):
|
||||
max_text_len = text_lengths.max()
|
||||
|
||||
# Due to the convolution in DVAE, codes do not end with silence at the right place. Rather it predicts some intermediate values
|
||||
# Like [..., 186, 45, 45, 83] where actually it should end with 186.
|
||||
# We take last 3 codes to prevent abrupt ending of the audio.
|
||||
# TODO: This is might need some testing.
|
||||
mel_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 3
|
||||
|
||||
# If len(codes) + 3 is larger than maxiumum allowed length, we truncate the codes.
|
||||
max_mel_len = mel_lengths.max()
|
||||
|
||||
if max_mel_len > audio_codes.shape[-1]:
|
||||
audio_codes = F.pad(audio_codes, (0, max_mel_len - audio_codes.shape[-1]))
|
||||
|
||||
# silence aware lengths, skip the silence tokens at the end of the mel codes.
|
||||
silence = True
|
||||
for idx, l in enumerate(mel_lengths):
|
||||
length = l.item()
|
||||
while silence:
|
||||
if audio_codes[idx, length - 1] != 83:
|
||||
break
|
||||
length -= 1
|
||||
mel_lengths[idx] = length
|
||||
|
||||
# Lovely assertions
|
||||
assert (
|
||||
max_mel_len <= audio_codes.shape[-1]
|
||||
), f" ❗ max_mel_len ({max_mel_len}) > audio_codes.shape[-1] ({audio_codes.shape[-1]})"
|
||||
assert (
|
||||
max_text_len <= text_inputs.shape[-1]
|
||||
), f" ❗ max_text_len ({max_text_len}) > text_inputs.shape[-1] ({text_inputs.shape[-1]})"
|
||||
|
||||
# Append stop token to text inputs
|
||||
text_inputs = F.pad(text_inputs[:, :max_text_len], (0, 1), value=self.stop_text_token)
|
||||
|
||||
# Append silence token to mel codes
|
||||
audio_codes = F.pad(audio_codes[:, :max_mel_len], (0, 1), value=self.stop_mel_token)
|
||||
|
||||
# Pad mel codes with STOP_MEL_TOKEN
|
||||
audio_codes = self.set_mel_padding(audio_codes, mel_lengths)
|
||||
|
||||
# Compute speech conditioning input
|
||||
conds = None
|
||||
if speech_conditioning_input is not None:
|
||||
if not return_latent:
|
||||
# Compute speech conditioning input
|
||||
speech_conditioning_input = (
|
||||
speech_conditioning_input.unsqueeze(1)
|
||||
if len(speech_conditioning_input.shape) == 3
|
||||
else speech_conditioning_input
|
||||
)
|
||||
|
||||
conds = []
|
||||
for j in range(speech_conditioning_input.shape[1]):
|
||||
conds.append(self.conditioning_encoder(speech_conditioning_input[:, j]))
|
||||
conds = torch.stack(conds, dim=1)
|
||||
if self.average_conditioning_embeddings:
|
||||
conds = conds.mean(dim=1).unsqueeze(1)
|
||||
else:
|
||||
# already computed
|
||||
conds = speech_conditioning_input.unsqueeze(1)
|
||||
|
||||
# Build input and target tensors
|
||||
# Prepend start token to inputs and append stop token to targets
|
||||
text_inputs, _ = self.set_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token)
|
||||
audio_codes, _ = self.set_inputs_and_targets(audio_codes, self.start_mel_token, self.stop_mel_token)
|
||||
|
||||
# Set attn_mask
|
||||
attn_mask_text = None
|
||||
attn_mask_mel = None
|
||||
if not return_latent:
|
||||
attn_mask_text = torch.ones(
|
||||
text_inputs.shape[0],
|
||||
text_inputs.shape[1],
|
||||
dtype=torch.bool,
|
||||
device=text_inputs.device,
|
||||
)
|
||||
attn_mask_mel = torch.ones(
|
||||
audio_codes.shape[0],
|
||||
audio_codes.shape[1],
|
||||
dtype=torch.bool,
|
||||
device=audio_codes.device,
|
||||
)
|
||||
|
||||
for idx, l in enumerate(text_lengths):
|
||||
attn_mask_text[idx, l + 1 :] = 0.0
|
||||
|
||||
for idx, l in enumerate(mel_lengths):
|
||||
attn_mask_mel[idx, l + 1 :] = 0.0
|
||||
|
||||
# Compute text embeddings + positional embeddings
|
||||
# print(" > text input latent:", text_inputs)
|
||||
text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
|
||||
# Compute mel embeddings + positional embeddings
|
||||
audio_emb = self.audio_embedding(audio_codes) + self.audio_embedding(audio_codes)
|
||||
|
||||
# Compute prompt embeddings + positional embeddings
|
||||
prompt = self.get_prompts(prompt_codes)
|
||||
|
||||
# prompt_emb = self.audio_embedding(prompt).detach() + self.mel_pos_embedding(prompt).detach()
|
||||
prompt_emb = self.prompt_embedding(prompt) + self.prompt_pos_embedding(prompt)
|
||||
|
||||
# dropout prompt embeddings
|
||||
prompt_emb = F.dropout(prompt_emb, p=0.1, training=self.training)
|
||||
|
||||
# Get logits
|
||||
sub = -4 # don't ask me why 😄
|
||||
if self.training:
|
||||
sub = -1
|
||||
_, audio_logits = self.get_logits(
|
||||
conds,
|
||||
text_emb,
|
||||
self.text_head,
|
||||
audio_emb,
|
||||
self.mel_head,
|
||||
prompt=prompt_emb,
|
||||
get_attns=return_attentions,
|
||||
return_latent=return_latent,
|
||||
attn_mask_text=attn_mask_text,
|
||||
attn_mask_mel=attn_mask_mel,
|
||||
)
|
||||
return audio_logits[:, :sub] # sub to prevent bla.
|
||||
|
||||
def compute_embeddings(
|
||||
self,
|
||||
speech_conditioning_latent,
|
||||
text_inputs,
|
||||
input_tokens=None,
|
||||
prompt_codes=None,
|
||||
pad_input_text=False,
|
||||
):
|
||||
"""Compute all the embeddings needed for inference."""
|
||||
if pad_input_text and text_inputs.shape[1] < 250:
|
||||
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
||||
else:
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
||||
|
||||
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
|
||||
print(" > Text inputs:", text_inputs)
|
||||
if prompt_codes is not None:
|
||||
prompt_codes = self.get_prompts(prompt_codes)
|
||||
# prompt_emb = self.audio_embedding(prompt_codes) + self.mel_pos_embedding(prompt_codes)
|
||||
prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes)
|
||||
|
||||
print(" > Prompt inputs:", prompt_codes)
|
||||
print(" > Prompt inputs shape:", prompt_codes.shape)
|
||||
emb = torch.cat([prompt_emb, emb], dim=1)
|
||||
|
||||
if speech_conditioning_latent is not None:
|
||||
conds = speech_conditioning_latent.unsqueeze(1)
|
||||
emb = torch.cat([conds, emb], dim=1)
|
||||
|
||||
self.inference_model.store_prefix_emb(emb)
|
||||
|
||||
fake_inputs = torch.full(
|
||||
(
|
||||
emb.shape[0],
|
||||
emb.shape[1] + 1, # +1 for the start_mel_token
|
||||
),
|
||||
fill_value=1,
|
||||
dtype=torch.long,
|
||||
device=text_inputs.device,
|
||||
)
|
||||
fake_inputs[:, -1] = self.start_mel_token
|
||||
|
||||
if input_tokens is not None:
|
||||
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
||||
return fake_inputs
|
||||
|
||||
def inference(
|
||||
self,
|
||||
text_inputs,
|
||||
input_tokens=None,
|
||||
prompt_codes=None,
|
||||
pad_input_text=False,
|
||||
**hf_generate_kwargs,
|
||||
):
|
||||
if pad_input_text and text_inputs.shape[1] < 250:
|
||||
text_inputs = F.pad(text_inputs, (0, 250 - text_inputs.shape[1]), value=self.stop_text_token)
|
||||
else:
|
||||
text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token)
|
||||
text_inputs = F.pad(text_inputs, (1, 0), value=self.start_text_token)
|
||||
|
||||
emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs)
|
||||
|
||||
if prompt_codes is not None:
|
||||
prompt_codes = self.get_prompts(prompt_codes)
|
||||
prompt_emb = self.prompt_embedding(prompt_codes) + self.prompt_pos_embedding(prompt_codes)
|
||||
emb = torch.cat([prompt_emb, emb], dim=1)
|
||||
|
||||
self.inference_model.store_prefix_emb(emb)
|
||||
|
||||
fake_inputs = torch.full(
|
||||
(
|
||||
emb.shape[0],
|
||||
emb.shape[1] + 1, # +1 for the start_mel_token
|
||||
),
|
||||
fill_value=1,
|
||||
dtype=torch.long,
|
||||
device=text_inputs.device,
|
||||
)
|
||||
fake_inputs[:, -1] = self.start_mel_token
|
||||
|
||||
if input_tokens is not None:
|
||||
fake_inputs = torch.cat([fake_inputs, input_tokens], dim=1)
|
||||
|
||||
gen = self.inference_model.generate(
|
||||
fake_inputs,
|
||||
bos_token_id=self.start_mel_token,
|
||||
pad_token_id=self.stop_mel_token,
|
||||
eos_token_id=self.stop_mel_token,
|
||||
max_length=self.max_audio_tokens * 2 + self.max_prompt_tokens + self.max_text_tokens,
|
||||
**hf_generate_kwargs,
|
||||
)
|
||||
if "return_dict_in_generate" in hf_generate_kwargs:
|
||||
return gen.sequences[:, fake_inputs.shape[1] :], gen
|
||||
return gen[:, fake_inputs.shape[1] :]
|
File diff suppressed because it is too large
Load Diff
|
@ -3,13 +3,19 @@ import glob
|
|||
import os
|
||||
import shutil
|
||||
|
||||
import torch
|
||||
|
||||
from tests import get_tests_data_path, get_tests_output_path, run_cli
|
||||
from TTS.tts.utils.languages import LanguageManager
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.utils.generic_utils import get_user_data_dir
|
||||
from TTS.utils.manage import ModelManager
|
||||
|
||||
MODELS_WITH_SEP_TESTS = ["bark", "xtts"]
|
||||
MODELS_WITH_SEP_TESTS = [
|
||||
"tts_models/multilingual/multi-dataset/bark",
|
||||
"tts_models/en/multi-dataset/tortoise-v2",
|
||||
"tts_models/multilingual/multi-dataset/xtts_v1",
|
||||
]
|
||||
|
||||
|
||||
def run_models(offset=0, step=1):
|
||||
|
@ -17,7 +23,8 @@ def run_models(offset=0, step=1):
|
|||
print(" > Run synthesizer with all the models.")
|
||||
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
manager = ModelManager(output_prefix=get_tests_output_path(), progress_bar=False)
|
||||
model_names = [name for name in manager.list_models() if name in MODELS_WITH_SEP_TESTS]
|
||||
model_names = [name for name in manager.list_models() if name not in MODELS_WITH_SEP_TESTS]
|
||||
print("Model names:", model_names)
|
||||
for model_name in model_names[offset::step]:
|
||||
print(f"\n > Run - {model_name}")
|
||||
model_path, _, _ = manager.download_model(model_name)
|
||||
|
@ -67,23 +74,55 @@ def run_models(offset=0, step=1):
|
|||
|
||||
|
||||
def test_xtts():
|
||||
"""XTTS is too big to run on github actions. We need to test it locally"""
|
||||
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
speaker_wav = os.path.join(get_tests_data_path(), "ljspeech", "wavs", "LJ001-0001.wav")
|
||||
run_cli(
|
||||
"yes | "
|
||||
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True '
|
||||
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
|
||||
)
|
||||
use_gpu = torch.cuda.is_available()
|
||||
if use_gpu:
|
||||
run_cli(
|
||||
"yes | "
|
||||
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True '
|
||||
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
|
||||
)
|
||||
else:
|
||||
run_cli(
|
||||
"yes | "
|
||||
f"tts --model_name tts_models/multilingual/multi-dataset/xtts_v1 "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False '
|
||||
f'--speaker_wav "{speaker_wav}" --language_idx "en"'
|
||||
)
|
||||
|
||||
|
||||
def test_tortoise():
|
||||
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
use_gpu = torch.cuda.is_available()
|
||||
if use_gpu:
|
||||
run_cli(
|
||||
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True'
|
||||
)
|
||||
else:
|
||||
run_cli(
|
||||
f" tts --model_name tts_models/en/multi-dataset/tortoise-v2 "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False'
|
||||
)
|
||||
|
||||
|
||||
def test_bark():
|
||||
"""Bark is too big to run on github actions. We need to test it locally"""
|
||||
output_path = os.path.join(get_tests_output_path(), "output.wav")
|
||||
run_cli(
|
||||
f" tts --model_name tts_models/multilingual/multi-dataset/bark "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True'
|
||||
)
|
||||
use_gpu = torch.cuda.is_available()
|
||||
if use_gpu:
|
||||
run_cli(
|
||||
f" tts --model_name tts_models/multilingual/multi-dataset/bark "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False --use_cuda True'
|
||||
)
|
||||
else:
|
||||
run_cli(
|
||||
f" tts --model_name tts_models/multilingual/multi-dataset/bark "
|
||||
f'--text "This is an example." --out_path "{output_path}" --progress_bar False'
|
||||
)
|
||||
|
||||
|
||||
def test_voice_conversion():
|
||||
|
|
Loading…
Reference in New Issue