mirror of https://github.com/coqui-ai/TTS.git
Add fairseq onnx support and strict configuration, fixes some onnx errors (#2831)
This commit is contained in:
parent
52a528cfcf
commit
4e7f8cd021
|
@ -1725,7 +1725,7 @@ class Vits(BaseTTS):
|
|||
assert not self.training
|
||||
|
||||
def load_fairseq_checkpoint(
|
||||
self, config, checkpoint_dir, eval=False
|
||||
self, config, checkpoint_dir, eval=False, strict=True
|
||||
): # pylint: disable=unused-argument, redefined-builtin
|
||||
"""Load VITS checkpoints released by fairseq here: https://github.com/facebookresearch/fairseq/tree/main/examples/mms
|
||||
Performs some changes for compatibility.
|
||||
|
@ -1763,7 +1763,7 @@ class Vits(BaseTTS):
|
|||
)
|
||||
# load fairseq checkpoint
|
||||
new_chk = rehash_fairseq_vits_checkpoint(checkpoint_file)
|
||||
self.load_state_dict(new_chk)
|
||||
self.load_state_dict(new_chk, strict=strict)
|
||||
if eval:
|
||||
self.eval()
|
||||
assert not self.training
|
||||
|
@ -1844,16 +1844,21 @@ class Vits(BaseTTS):
|
|||
|
||||
# set dummy inputs
|
||||
dummy_input_length = 100
|
||||
sequences = torch.randint(low=0, high=self.args.num_chars, size=(1, dummy_input_length), dtype=torch.long)
|
||||
sequences = torch.randint(low=0, high=2, size=(1, dummy_input_length), dtype=torch.long)
|
||||
sequence_lengths = torch.LongTensor([sequences.size(1)])
|
||||
speaker_id = None
|
||||
language_id = None
|
||||
if self.num_speakers > 1:
|
||||
speaker_id = torch.LongTensor([0])
|
||||
if self.num_languages > 0 and self.embedded_language_dim > 0:
|
||||
language_id = torch.LongTensor([0])
|
||||
scales = torch.FloatTensor([self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp])
|
||||
dummy_input = (sequences, sequence_lengths, scales, speaker_id, language_id)
|
||||
dummy_input = (sequences, sequence_lengths, scales)
|
||||
input_names = ["input", "input_lengths", "scales"]
|
||||
|
||||
if self.num_speakers > 0:
|
||||
speaker_id = torch.LongTensor([0])
|
||||
dummy_input += (speaker_id, )
|
||||
input_names.append("sid")
|
||||
|
||||
if hasattr(self, 'num_languages') and self.num_languages > 0 and self.embedded_language_dim > 0:
|
||||
language_id = torch.LongTensor([0])
|
||||
dummy_input += (language_id, )
|
||||
input_names.append("langid")
|
||||
|
||||
# export to ONNX
|
||||
torch.onnx.export(
|
||||
|
@ -1862,7 +1867,7 @@ class Vits(BaseTTS):
|
|||
opset_version=15,
|
||||
f=output_path,
|
||||
verbose=verbose,
|
||||
input_names=["input", "input_lengths", "scales", "sid", "langid"],
|
||||
input_names=input_names,
|
||||
output_names=["output"],
|
||||
dynamic_axes={
|
||||
"input": {0: "batch_size", 1: "phonemes"},
|
||||
|
@ -1908,16 +1913,19 @@ class Vits(BaseTTS):
|
|||
[self.inference_noise_scale, self.length_scale, self.inference_noise_scale_dp],
|
||||
dtype=np.float32,
|
||||
)
|
||||
input_params = {
|
||||
"input": x,
|
||||
"input_lengths": x_lengths,
|
||||
"scales": scales
|
||||
}
|
||||
if not speaker_id is None:
|
||||
input_params["sid"] = torch.tensor([speaker_id]).cpu().numpy()
|
||||
if not language_id is None:
|
||||
input_params["langid"] = torch.tensor([language_id]).cpu().numpy()
|
||||
|
||||
audio = self.onnx_sess.run(
|
||||
["output"],
|
||||
{
|
||||
"input": x,
|
||||
"input_lengths": x_lengths,
|
||||
"scales": scales,
|
||||
"sid": None if speaker_id is None else torch.tensor([speaker_id]).cpu().numpy(),
|
||||
"langid": None if language_id is None else torch.tensor([language_id]).cpu().numpy(),
|
||||
},
|
||||
input_params,
|
||||
)
|
||||
return audio[0][0]
|
||||
|
||||
|
|
Loading…
Reference in New Issue