Add emotion external embeddings training unit test

This commit is contained in:
Edresson Casanova 2022-03-15 13:09:58 +00:00
parent 5090034fd1
commit 4f03784b1f
2 changed files with 93 additions and 5 deletions

View File

@ -559,7 +559,7 @@ class Vits(BaseTTS):
self.init_multispeaker(config)
self.init_multilingual(config)
self.init_emotion(config, emotion_manager)
self.init_emotion(emotion_manager)
self.init_consistency_loss()
self.length_scale = self.args.length_scale
@ -745,7 +745,7 @@ class Vits(BaseTTS):
self.embedded_language_dim = 0
self.emb_l = None
def init_emotion(self, config: Coqpit, emotion_manager: EmotionManager):
def init_emotion(self, emotion_manager: EmotionManager):
# pylint: disable=attribute-defined-outside-init
"""Initialize emotion modules of a model. A model can be trained either with a emotion embedding layer
or with external `embeddings` computed from a emotion encoder model.
@ -753,7 +753,6 @@ class Vits(BaseTTS):
You must provide a `emotion_manager` at initialization to set up the emotion modules.
Args:
config (Coqpit): Model configuration.
emotion_manager (Coqpit): Emotion Manager.
"""
self.emotion_manager = emotion_manager
@ -937,7 +936,7 @@ class Vits(BaseTTS):
# concat the emotion embedding and speaker embedding
if eg is not None and (self.args.use_emotion_embedding or self.args.use_external_emotions_embeddings):
g = torch.cat([g, eg], dim=1) # [b, h1+h1, 1]
g = torch.cat([g, eg], dim=1) # [b, h1+h2, 1]
# language embedding
lang_emb = None
@ -1047,7 +1046,7 @@ class Vits(BaseTTS):
eg = self.emb_emotion(eid).unsqueeze(-1) # [b, h, 1]
# concat the emotion embedding and speaker embedding
if eg is not None and (self.args.use_emotion_embedding or self.args.use_external_emotions_embeddings):
if eg is not None and g is not None and (self.args.use_emotion_embedding or self.args.use_external_emotions_embeddings):
g = torch.cat([g, eg], dim=1) # [b, h1+h1, 1]
# language embedding

View File

@ -0,0 +1,89 @@
import glob
import os
import shutil
from trainer import get_last_checkpoint
from tests import get_device_id, get_tests_output_path, run_cli
from TTS.tts.configs.vits_config import VitsConfig
config_path = os.path.join(get_tests_output_path(), "test_model_config.json")
output_path = os.path.join(get_tests_output_path(), "train_outputs")
config = VitsConfig(
batch_size=2,
eval_batch_size=2,
num_loader_workers=0,
num_eval_loader_workers=0,
text_cleaner="english_cleaners",
use_phonemes=True,
phoneme_language="en-us",
phoneme_cache_path="tests/data/ljspeech/phoneme_cache/",
run_eval=True,
test_delay_epochs=-1,
epochs=1,
print_step=1,
print_eval=True,
test_sentences=[
["Be a voice, not an echo.", "ljspeech-1", None, None, "ljspeech-1"],
],
)
# set audio config
config.audio.do_trim_silence = True
config.audio.trim_db = 60
# active multispeaker d-vec mode
config.model_args.use_speaker_embedding = False
config.use_speaker_embedding = False
config.model_args.use_d_vector_file = True
config.use_d_vector_file = True
config.model_args.d_vector_file = "tests/data/ljspeech/speakers.json"
config.model_args.d_vector_dim = 256
# emotion
config.model_args.use_external_emotions_embeddings = True
config.model_args.use_emotion_embedding = False
config.model_args.emotion_embedding_dim = 256
config.model_args.external_emotions_embs_file = "tests/data/ljspeech/speakers.json"
# consistency loss
# config.model_args.use_emotion_encoder_as_loss = True
# config.model_args.encoder_model_path = "/raid/edresson/dev/Checkpoints/Coqui-Realesead/tts_models--multilingual--multi-dataset--your_tts/model_se.pth.tar"
# config.model_args.encoder_config_path = "/raid/edresson/dev/Checkpoints/Coqui-Realesead/tts_models--multilingual--multi-dataset--your_tts/config_se.json"
config.save_json(config_path)
# train the model for one epoch
command_train = (
f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --config_path {config_path} "
f"--coqpit.output_path {output_path} "
"--coqpit.datasets.0.name ljspeech_test "
"--coqpit.datasets.0.meta_file_train metadata.csv "
"--coqpit.datasets.0.meta_file_val metadata.csv "
"--coqpit.datasets.0.path tests/data/ljspeech "
"--coqpit.datasets.0.meta_file_attn_mask tests/data/ljspeech/metadata_attn_mask.txt "
"--coqpit.test_delay_epochs 0"
)
run_cli(command_train)
# Find latest folder
continue_path = max(glob.glob(os.path.join(output_path, "*/")), key=os.path.getmtime)
# Inference using TTS API
continue_config_path = os.path.join(continue_path, "config.json")
continue_restore_path, _ = get_last_checkpoint(continue_path)
out_wav_path = os.path.join(get_tests_output_path(), "output.wav")
speaker_id = "ljspeech-1"
emotion_id = "ljspeech-3"
continue_speakers_path = os.path.join(continue_path, "speakers.json")
continue_emotion_path = os.path.join(continue_path, "speakers.json")
inference_command = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' tts --text 'This is an example.' --speaker_idx {speaker_id} --emotion_idx {emotion_id} --speakers_file_path {continue_speakers_path} --emotions_file_path {continue_emotion_path} --config_path {continue_config_path} --model_path {continue_restore_path} --out_path {out_wav_path}"
run_cli(inference_command)
# restore the model and continue training for one more epoch
command_train = f"CUDA_VISIBLE_DEVICES='{get_device_id()}' python TTS/bin/train_tts.py --continue_path {continue_path} "
run_cli(command_train)
shutil.rmtree(continue_path)