mirror of https://github.com/coqui-ai/TTS.git
Merge pull request #467 from reuben/refactor-updates
Minor clean-ups from looking at refactored code
This commit is contained in:
commit
4f1c30f770
|
@ -1,177 +0,0 @@
|
||||||
import torch
|
|
||||||
import librosa
|
|
||||||
import soundfile as sf
|
|
||||||
import numpy as np
|
|
||||||
import scipy.io
|
|
||||||
import scipy.signal
|
|
||||||
|
|
||||||
from TTS.tts.utils.stft_torch import STFT
|
|
||||||
|
|
||||||
class AudioProcessor(object):
|
|
||||||
def __init__(self,
|
|
||||||
sample_rate=None,
|
|
||||||
num_mels=None,
|
|
||||||
frame_shift_ms=None,
|
|
||||||
frame_length_ms=None,
|
|
||||||
hop_length=None,
|
|
||||||
win_length=None,
|
|
||||||
num_freq=None,
|
|
||||||
power=None,
|
|
||||||
mel_fmin=None,
|
|
||||||
mel_fmax=None,
|
|
||||||
griffin_lim_iters=None,
|
|
||||||
do_trim_silence=False,
|
|
||||||
trim_db=60,
|
|
||||||
sound_norm=False,
|
|
||||||
use_cuda=False,
|
|
||||||
**_):
|
|
||||||
|
|
||||||
print(" > Setting up Torch based Audio Processor...")
|
|
||||||
# setup class attributed
|
|
||||||
self.sample_rate = sample_rate
|
|
||||||
self.num_mels = num_mels
|
|
||||||
self.frame_shift_ms = frame_shift_ms
|
|
||||||
self.frame_length_ms = frame_length_ms
|
|
||||||
self.num_freq = num_freq
|
|
||||||
self.power = power
|
|
||||||
self.griffin_lim_iters = griffin_lim_iters
|
|
||||||
self.mel_fmin = mel_fmin or 0
|
|
||||||
self.mel_fmax = mel_fmax
|
|
||||||
self.do_trim_silence = do_trim_silence
|
|
||||||
self.trim_db = trim_db
|
|
||||||
self.sound_norm = sound_norm
|
|
||||||
# setup stft parameters
|
|
||||||
if hop_length is None:
|
|
||||||
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
|
|
||||||
else:
|
|
||||||
self.hop_length = hop_length
|
|
||||||
self.win_length = win_length
|
|
||||||
self.n_fft = (self.num_freq - 1) * 2
|
|
||||||
members = vars(self)
|
|
||||||
# print class attributes
|
|
||||||
for key, value in members.items():
|
|
||||||
print(" | > {}:{}".format(key, value))
|
|
||||||
# create spectrogram utils
|
|
||||||
self.mel_basis = torch.from_numpy(self._build_mel_basis()).float()
|
|
||||||
self.inv_mel_basis = torch.from_numpy(np.linalg.pinv(self._build_mel_basis())).float()
|
|
||||||
self.stft = STFT(filter_length=self.n_fft, hop_length=self.hop_length, win_length=self.win_length,
|
|
||||||
window='hann', padding_mode='constant', use_cuda=use_cuda)
|
|
||||||
|
|
||||||
### setting up the parameters ###
|
|
||||||
def _build_mel_basis(self):
|
|
||||||
if self.mel_fmax is not None:
|
|
||||||
assert self.mel_fmax <= self.sample_rate // 2
|
|
||||||
return librosa.filters.mel(
|
|
||||||
self.sample_rate,
|
|
||||||
self.n_fft,
|
|
||||||
n_mels=self.num_mels,
|
|
||||||
fmin=self.mel_fmin,
|
|
||||||
fmax=self.mel_fmax)
|
|
||||||
|
|
||||||
def _stft_parameters(self, ):
|
|
||||||
"""Compute necessary stft parameters with given time values"""
|
|
||||||
n_fft = (self.num_freq - 1) * 2
|
|
||||||
factor = self.frame_length_ms / self.frame_shift_ms
|
|
||||||
assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms"
|
|
||||||
hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate)
|
|
||||||
win_length = int(hop_length * factor)
|
|
||||||
return n_fft, hop_length, win_length
|
|
||||||
|
|
||||||
### DB and AMP conversion ###
|
|
||||||
def amp_to_db(self, x):
|
|
||||||
return torch.log10(torch.clamp(x, min=1e-5))
|
|
||||||
|
|
||||||
def db_to_amp(self, x):
|
|
||||||
return torch.pow(10.0, x)
|
|
||||||
|
|
||||||
### SPECTROGRAM ###
|
|
||||||
def linear_to_mel(self, spectrogram):
|
|
||||||
return torch.matmul(self.mel_basis, spectrogram)
|
|
||||||
|
|
||||||
def mel_to_linear(self, mel_spec):
|
|
||||||
return np.maximum(1e-10, np.matmul(self.inv_mel_basis, mel_spec))
|
|
||||||
|
|
||||||
def spectrogram(self, y):
|
|
||||||
''' Compute spectrograms
|
|
||||||
Args:
|
|
||||||
y (Tensor): audio signal. (B x T)
|
|
||||||
'''
|
|
||||||
M, P = self.stft.transform(y)
|
|
||||||
return self.amp_to_db(M)
|
|
||||||
|
|
||||||
def melspectrogram(self, y):
|
|
||||||
''' Compute mel-spectrograms
|
|
||||||
Args:
|
|
||||||
y (Tensor): audio signal. (B x T)
|
|
||||||
'''
|
|
||||||
M, P = self.stft.transform(y)
|
|
||||||
return self.amp_to_db(self.linear_to_mel(M))
|
|
||||||
|
|
||||||
### INV SPECTROGRAM ###
|
|
||||||
def inv_spectrogram(self, S):
|
|
||||||
"""Converts spectrogram to waveform using librosa"""
|
|
||||||
S = self.db_to_amp(S)
|
|
||||||
return self.griffin_lim(S**self.power)
|
|
||||||
|
|
||||||
def inv_melspectrogram(self, S):
|
|
||||||
'''Converts mel spectrogram to waveform using librosa'''
|
|
||||||
S = self.db_to_amp(S)
|
|
||||||
S = self.mel_to_linear(S) # Convert back to linear
|
|
||||||
return self.griffin_lim(S**self.power)
|
|
||||||
|
|
||||||
def out_linear_to_mel(self, linear_spec):
|
|
||||||
S = self._denormalize(linear_spec)
|
|
||||||
S = self._db_to_amp(S)
|
|
||||||
S = self._linear_to_mel(np.abs(S))
|
|
||||||
S = self._amp_to_db(S)
|
|
||||||
mel = self._normalize(S)
|
|
||||||
return mel
|
|
||||||
|
|
||||||
def griffin_lim(self, S):
|
|
||||||
"""
|
|
||||||
PARAMS
|
|
||||||
------
|
|
||||||
magnitudes: spectrogram magnitudes
|
|
||||||
"""
|
|
||||||
|
|
||||||
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*S.size())))
|
|
||||||
angles = angles.astype(np.float32)
|
|
||||||
angles = torch.from_numpy(angles)
|
|
||||||
signal = self.stft.inverse(S, angles).squeeze(1)
|
|
||||||
|
|
||||||
for _ in range(self.griffin_lim_iters):
|
|
||||||
_, angles = self.stft.transform(signal)
|
|
||||||
signal = self.stft.inverse(S, angles).squeeze(1)
|
|
||||||
return signal
|
|
||||||
|
|
||||||
### Audio processing ###
|
|
||||||
def find_endpoint(self, wav, threshold_db=-40, min_silence_sec=0.8):
|
|
||||||
window_length = int(self.sample_rate * min_silence_sec)
|
|
||||||
hop_length = int(window_length / 4)
|
|
||||||
threshold = self._db_to_amp(threshold_db)
|
|
||||||
for x in range(hop_length, len(wav) - window_length, hop_length):
|
|
||||||
if np.max(wav[x:x + window_length]) < threshold:
|
|
||||||
return x + hop_length
|
|
||||||
return len(wav)
|
|
||||||
|
|
||||||
def trim_silence(self, wav):
|
|
||||||
""" Trim silent parts with a threshold and 0.01 sec margin """
|
|
||||||
margin = int(self.sample_rate * 0.01)
|
|
||||||
wav = wav[margin:-margin]
|
|
||||||
return librosa.effects.trim(
|
|
||||||
wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[0]
|
|
||||||
|
|
||||||
def sound_norm(self, x):
|
|
||||||
return x / abs(x).max() * 0.9
|
|
||||||
|
|
||||||
### SAVE and LOAD ###
|
|
||||||
def load_wav(self, filename, sr=None):
|
|
||||||
if sr is None:
|
|
||||||
x, sr = sf.read(filename)
|
|
||||||
else:
|
|
||||||
x, sr = librosa.load(filename, sr=sr)
|
|
||||||
return x
|
|
||||||
|
|
||||||
def save_wav(self, wav, path):
|
|
||||||
wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav))))
|
|
||||||
scipy.io.wavfile.write(path, self.sample_rate, wav_norm.astype(np.int16))
|
|
|
@ -1,231 +0,0 @@
|
||||||
import pkg_resources
|
|
||||||
installed = {pkg.key for pkg in pkg_resources.working_set} #pylint: disable=not-an-iterable
|
|
||||||
if 'tensorflow' in installed or 'tensorflow-gpu' in installed:
|
|
||||||
import tensorflow as tf
|
|
||||||
import torch
|
|
||||||
import numpy as np
|
|
||||||
from .text import text_to_sequence, phoneme_to_sequence
|
|
||||||
|
|
||||||
|
|
||||||
def text_to_seqvec(text, CONFIG):
|
|
||||||
text_cleaner = [CONFIG.text_cleaner]
|
|
||||||
# text ot phonemes to sequence vector
|
|
||||||
if CONFIG.use_phonemes:
|
|
||||||
seq = np.asarray(
|
|
||||||
phoneme_to_sequence(text, text_cleaner, CONFIG.phoneme_language,
|
|
||||||
CONFIG.enable_eos_bos_chars,
|
|
||||||
tp=CONFIG.characters if 'characters' in CONFIG.keys() else None),
|
|
||||||
dtype=np.int32)
|
|
||||||
else:
|
|
||||||
seq = np.asarray(text_to_sequence(text, text_cleaner, tp=CONFIG.characters if 'characters' in CONFIG.keys() else None), dtype=np.int32)
|
|
||||||
return seq
|
|
||||||
|
|
||||||
|
|
||||||
def numpy_to_torch(np_array, dtype, cuda=False):
|
|
||||||
if np_array is None:
|
|
||||||
return None
|
|
||||||
tensor = torch.as_tensor(np_array, dtype=dtype)
|
|
||||||
if cuda:
|
|
||||||
return tensor.cuda()
|
|
||||||
return tensor
|
|
||||||
|
|
||||||
|
|
||||||
def numpy_to_tf(np_array, dtype):
|
|
||||||
if np_array is None:
|
|
||||||
return None
|
|
||||||
tensor = tf.convert_to_tensor(np_array, dtype=dtype)
|
|
||||||
return tensor
|
|
||||||
|
|
||||||
|
|
||||||
def compute_style_mel(style_wav, ap):
|
|
||||||
style_mel = ap.melspectrogram(
|
|
||||||
ap.load_wav(style_wav)).expand_dims(0)
|
|
||||||
return style_mel
|
|
||||||
|
|
||||||
|
|
||||||
def run_model_torch(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
|
|
||||||
if CONFIG.use_gst:
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
|
||||||
inputs, style_mel=style_mel, speaker_ids=speaker_id)
|
|
||||||
else:
|
|
||||||
if truncated:
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference_truncated(
|
|
||||||
inputs, speaker_ids=speaker_id)
|
|
||||||
else:
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model.inference(
|
|
||||||
inputs, speaker_ids=speaker_id)
|
|
||||||
return decoder_output, postnet_output, alignments, stop_tokens
|
|
||||||
|
|
||||||
|
|
||||||
def run_model_tf(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
|
|
||||||
if CONFIG.use_gst and style_mel is not None:
|
|
||||||
raise NotImplementedError(' [!] GST inference not implemented for TF')
|
|
||||||
if truncated:
|
|
||||||
raise NotImplementedError(' [!] Truncated inference not implemented for TF')
|
|
||||||
if speaker_id is not None:
|
|
||||||
raise NotImplementedError(' [!] Multi-Speaker not implemented for TF')
|
|
||||||
# TODO: handle multispeaker case
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
|
||||||
inputs, training=False)
|
|
||||||
return decoder_output, postnet_output, alignments, stop_tokens
|
|
||||||
|
|
||||||
|
|
||||||
def run_model_tflite(model, inputs, CONFIG, truncated, speaker_id=None, style_mel=None):
|
|
||||||
if CONFIG.use_gst and style_mel is not None:
|
|
||||||
raise NotImplementedError(' [!] GST inference not implemented for TfLite')
|
|
||||||
if truncated:
|
|
||||||
raise NotImplementedError(' [!] Truncated inference not implemented for TfLite')
|
|
||||||
if speaker_id is not None:
|
|
||||||
raise NotImplementedError(' [!] Multi-Speaker not implemented for TfLite')
|
|
||||||
# get input and output details
|
|
||||||
input_details = model.get_input_details()
|
|
||||||
output_details = model.get_output_details()
|
|
||||||
# reshape input tensor for the new input shape
|
|
||||||
model.resize_tensor_input(input_details[0]['index'], inputs.shape)
|
|
||||||
model.allocate_tensors()
|
|
||||||
detail = input_details[0]
|
|
||||||
# input_shape = detail['shape']
|
|
||||||
model.set_tensor(detail['index'], inputs)
|
|
||||||
# run the model
|
|
||||||
model.invoke()
|
|
||||||
# collect outputs
|
|
||||||
decoder_output = model.get_tensor(output_details[0]['index'])
|
|
||||||
postnet_output = model.get_tensor(output_details[1]['index'])
|
|
||||||
# tflite model only returns feature frames
|
|
||||||
return decoder_output, postnet_output, None, None
|
|
||||||
|
|
||||||
|
|
||||||
def parse_outputs_torch(postnet_output, decoder_output, alignments, stop_tokens):
|
|
||||||
postnet_output = postnet_output[0].data.cpu().numpy()
|
|
||||||
decoder_output = decoder_output[0].data.cpu().numpy()
|
|
||||||
alignment = alignments[0].cpu().data.numpy()
|
|
||||||
stop_tokens = stop_tokens[0].cpu().numpy()
|
|
||||||
return postnet_output, decoder_output, alignment, stop_tokens
|
|
||||||
|
|
||||||
|
|
||||||
def parse_outputs_tf(postnet_output, decoder_output, alignments, stop_tokens):
|
|
||||||
postnet_output = postnet_output[0].numpy()
|
|
||||||
decoder_output = decoder_output[0].numpy()
|
|
||||||
alignment = alignments[0].numpy()
|
|
||||||
stop_tokens = stop_tokens[0].numpy()
|
|
||||||
return postnet_output, decoder_output, alignment, stop_tokens
|
|
||||||
|
|
||||||
|
|
||||||
def parse_outputs_tflite(postnet_output, decoder_output):
|
|
||||||
postnet_output = postnet_output[0]
|
|
||||||
decoder_output = decoder_output[0]
|
|
||||||
return postnet_output, decoder_output
|
|
||||||
|
|
||||||
|
|
||||||
def trim_silence(wav, ap):
|
|
||||||
return wav[:ap.find_endpoint(wav)]
|
|
||||||
|
|
||||||
|
|
||||||
def inv_spectrogram(postnet_output, ap, CONFIG):
|
|
||||||
if CONFIG.model.lower() in ["tacotron"]:
|
|
||||||
wav = ap.inv_spectrogram(postnet_output.T)
|
|
||||||
else:
|
|
||||||
wav = ap.inv_melspectrogram(postnet_output.T)
|
|
||||||
return wav
|
|
||||||
|
|
||||||
|
|
||||||
def id_to_torch(speaker_id):
|
|
||||||
if speaker_id is not None:
|
|
||||||
speaker_id = np.asarray(speaker_id)
|
|
||||||
speaker_id = torch.from_numpy(speaker_id).unsqueeze(0)
|
|
||||||
return speaker_id
|
|
||||||
|
|
||||||
|
|
||||||
# TODO: perform GL with pytorch for batching
|
|
||||||
def apply_griffin_lim(inputs, input_lens, CONFIG, ap):
|
|
||||||
'''Apply griffin-lim to each sample iterating throught the first dimension.
|
|
||||||
Args:
|
|
||||||
inputs (Tensor or np.Array): Features to be converted by GL. First dimension is the batch size.
|
|
||||||
input_lens (Tensor or np.Array): 1D array of sample lengths.
|
|
||||||
CONFIG (Dict): TTS config.
|
|
||||||
ap (AudioProcessor): TTS audio processor.
|
|
||||||
'''
|
|
||||||
wavs = []
|
|
||||||
for idx, spec in enumerate(inputs):
|
|
||||||
wav_len = (input_lens[idx] * ap.hop_length) - ap.hop_length # inverse librosa padding
|
|
||||||
wav = inv_spectrogram(spec, ap, CONFIG)
|
|
||||||
# assert len(wav) == wav_len, f" [!] wav lenght: {len(wav)} vs expected: {wav_len}"
|
|
||||||
wavs.append(wav[:wav_len])
|
|
||||||
return wavs
|
|
||||||
|
|
||||||
|
|
||||||
def synthesis(model,
|
|
||||||
text,
|
|
||||||
CONFIG,
|
|
||||||
use_cuda,
|
|
||||||
ap,
|
|
||||||
speaker_id=None,
|
|
||||||
style_wav=None,
|
|
||||||
truncated=False,
|
|
||||||
enable_eos_bos_chars=False, #pylint: disable=unused-argument
|
|
||||||
use_griffin_lim=False,
|
|
||||||
do_trim_silence=False,
|
|
||||||
backend='torch'):
|
|
||||||
"""Synthesize voice for the given text.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model (TTS.tts.models): model to synthesize.
|
|
||||||
text (str): target text
|
|
||||||
CONFIG (dict): config dictionary to be loaded from config.json.
|
|
||||||
use_cuda (bool): enable cuda.
|
|
||||||
ap (TTS.tts.utils.audio.AudioProcessor): audio processor to process
|
|
||||||
model outputs.
|
|
||||||
speaker_id (int): id of speaker
|
|
||||||
style_wav (str): Uses for style embedding of GST.
|
|
||||||
truncated (bool): keep model states after inference. It can be used
|
|
||||||
for continuous inference at long texts.
|
|
||||||
enable_eos_bos_chars (bool): enable special chars for end of sentence and start of sentence.
|
|
||||||
do_trim_silence (bool): trim silence after synthesis.
|
|
||||||
backend (str): tf or torch
|
|
||||||
"""
|
|
||||||
# GST processing
|
|
||||||
style_mel = None
|
|
||||||
if CONFIG.model == "TacotronGST" and style_wav is not None:
|
|
||||||
style_mel = compute_style_mel(style_wav, ap)
|
|
||||||
# preprocess the given text
|
|
||||||
inputs = text_to_seqvec(text, CONFIG)
|
|
||||||
# pass tensors to backend
|
|
||||||
if backend == 'torch':
|
|
||||||
speaker_id = id_to_torch(speaker_id)
|
|
||||||
style_mel = numpy_to_torch(style_mel, torch.float, cuda=use_cuda)
|
|
||||||
inputs = numpy_to_torch(inputs, torch.long, cuda=use_cuda)
|
|
||||||
inputs = inputs.unsqueeze(0)
|
|
||||||
elif backend == 'tf':
|
|
||||||
# TODO: handle speaker id for tf model
|
|
||||||
style_mel = numpy_to_tf(style_mel, tf.float32)
|
|
||||||
inputs = numpy_to_tf(inputs, tf.int32)
|
|
||||||
inputs = tf.expand_dims(inputs, 0)
|
|
||||||
elif backend == 'tflite':
|
|
||||||
style_mel = numpy_to_tf(style_mel, tf.float32)
|
|
||||||
inputs = numpy_to_tf(inputs, tf.int32)
|
|
||||||
inputs = tf.expand_dims(inputs, 0)
|
|
||||||
# synthesize voice
|
|
||||||
if backend == 'torch':
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = run_model_torch(
|
|
||||||
model, inputs, CONFIG, truncated, speaker_id, style_mel)
|
|
||||||
postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_torch(
|
|
||||||
postnet_output, decoder_output, alignments, stop_tokens)
|
|
||||||
elif backend == 'tf':
|
|
||||||
decoder_output, postnet_output, alignments, stop_tokens = run_model_tf(
|
|
||||||
model, inputs, CONFIG, truncated, speaker_id, style_mel)
|
|
||||||
postnet_output, decoder_output, alignment, stop_tokens = parse_outputs_tf(
|
|
||||||
postnet_output, decoder_output, alignments, stop_tokens)
|
|
||||||
elif backend == 'tflite':
|
|
||||||
decoder_output, postnet_output, alignment, stop_tokens = run_model_tflite(
|
|
||||||
model, inputs, CONFIG, truncated, speaker_id, style_mel)
|
|
||||||
postnet_output, decoder_output = parse_outputs_tflite(
|
|
||||||
postnet_output, decoder_output)
|
|
||||||
# convert outputs to numpy
|
|
||||||
# plot results
|
|
||||||
wav = None
|
|
||||||
if use_griffin_lim:
|
|
||||||
wav = inv_spectrogram(postnet_output, ap, CONFIG)
|
|
||||||
# trim silence
|
|
||||||
if do_trim_silence:
|
|
||||||
wav = trim_silence(wav, ap)
|
|
||||||
return wav, alignment, decoder_output, postnet_output, stop_tokens, inputs
|
|
|
@ -1145,7 +1145,7 @@
|
||||||
"from TTS.utils.io import load_config\n",
|
"from TTS.utils.io import load_config\n",
|
||||||
"from TTS.utils.text.symbols import symbols, phonemes\n",
|
"from TTS.utils.text.symbols import symbols, phonemes\n",
|
||||||
"from TTS.utils.audio import AudioProcessor\n",
|
"from TTS.utils.audio import AudioProcessor\n",
|
||||||
"from TTS.utils.synthesis import synthesis"
|
"from TTS.tts.utils.synthesis import synthesis"
|
||||||
],
|
],
|
||||||
"execution_count": null,
|
"execution_count": null,
|
||||||
"outputs": []
|
"outputs": []
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
torch>=1.5
|
torch>=1.5
|
||||||
tensorflow>=2.2
|
tensorflow==2.3.0rc0
|
||||||
numpy>=1.16.0
|
numpy>=1.16.0
|
||||||
scipy>=0.19.0
|
scipy>=0.19.0
|
||||||
numba==0.48
|
numba==0.48
|
||||||
|
|
33
setup.py
33
setup.py
|
@ -76,34 +76,13 @@ def pip_install(package_name):
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
reqs_from_file = open('requirements.txt').readlines()
|
||||||
|
reqs_without_tf = [r for r in reqs_from_file if not r.startswith('tensorflow')]
|
||||||
|
tf_req = [r for r in reqs_from_file if r.startswith('tensorflow')]
|
||||||
|
|
||||||
requirements = {
|
requirements = {
|
||||||
'install_requires':[
|
'install_requires': reqs_without_tf,
|
||||||
"torch>=1.5",
|
'pip_install': tf_req
|
||||||
"numpy>=1.16.0",
|
|
||||||
"numba==0.48",
|
|
||||||
"scipy>=0.19.0",
|
|
||||||
"librosa==0.7.2",
|
|
||||||
"unidecode==0.4.20",
|
|
||||||
"attrdict",
|
|
||||||
"tensorboardX",
|
|
||||||
"matplotlib",
|
|
||||||
"Pillow",
|
|
||||||
"flask",
|
|
||||||
"tqdm",
|
|
||||||
"inflect",
|
|
||||||
"pysbd",
|
|
||||||
"bokeh==1.4.0",
|
|
||||||
"soundfile",
|
|
||||||
"phonemizer>=2.2.0",
|
|
||||||
"nose==1.3.7",
|
|
||||||
"cardboardlint==1.3.0",
|
|
||||||
"pylint==2.5.3",
|
|
||||||
'fuzzywuzzy',
|
|
||||||
'gdown'
|
|
||||||
],
|
|
||||||
'pip_install':[
|
|
||||||
'tensorflow==2.3.0rc0',
|
|
||||||
]
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue