mirror of https://github.com/coqui-ai/TTS.git
Update WaveRNN
This commit is contained in:
parent
3d5205d66f
commit
4f94f91305
|
@ -222,10 +222,7 @@ class Wavernn(BaseVocoder):
|
|||
samples at once. The Subscale WaveRNN produces 16 samples per step without loss of quality and offers an
|
||||
orthogonal method for increasing sampling efficiency.
|
||||
"""
|
||||
super().__init__()
|
||||
|
||||
self.args = config.model_params
|
||||
self.config = config
|
||||
super().__init__(config)
|
||||
|
||||
if isinstance(self.args.mode, int):
|
||||
self.n_classes = 2 ** self.args.mode
|
||||
|
@ -572,8 +569,9 @@ class Wavernn(BaseVocoder):
|
|||
|
||||
@torch.no_grad()
|
||||
def test_run(
|
||||
self, ap: AudioProcessor, samples: List[Dict], output: Dict # pylint: disable=unused-argument
|
||||
self, assets: Dict, samples: List[Dict], output: Dict # pylint: disable=unused-argument
|
||||
) -> Tuple[Dict, Dict]:
|
||||
ap = assets["audio_processor"]
|
||||
figures = {}
|
||||
audios = {}
|
||||
for idx, sample in enumerate(samples):
|
||||
|
@ -600,20 +598,21 @@ class Wavernn(BaseVocoder):
|
|||
def get_data_loader( # pylint: disable=no-self-use
|
||||
self,
|
||||
config: Coqpit,
|
||||
ap: AudioProcessor,
|
||||
assets: Dict,
|
||||
is_eval: True,
|
||||
data_items: List,
|
||||
verbose: bool,
|
||||
num_gpus: int,
|
||||
):
|
||||
ap = assets["audio_processor"]
|
||||
dataset = WaveRNNDataset(
|
||||
ap=ap,
|
||||
items=data_items,
|
||||
seq_len=config.seq_len,
|
||||
hop_len=ap.hop_length,
|
||||
pad=config.model_params.pad,
|
||||
mode=config.model_params.mode,
|
||||
mulaw=config.model_params.mulaw,
|
||||
pad=config.model_args.pad,
|
||||
mode=config.model_args.mode,
|
||||
mulaw=config.model_args.mulaw,
|
||||
is_training=not is_eval,
|
||||
verbose=verbose,
|
||||
)
|
||||
|
|
|
@ -1,7 +1,11 @@
|
|||
import os
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs, init_training
|
||||
|
||||
from TTS.trainer import Trainer, TrainingArgs
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.vocoder.configs import WavernnConfig
|
||||
from TTS.vocoder.datasets.preprocess import load_wav_data
|
||||
from TTS.vocoder.models.wavernn import Wavernn
|
||||
|
||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||
config = WavernnConfig(
|
||||
|
@ -24,6 +28,24 @@ config = WavernnConfig(
|
|||
data_path=os.path.join(output_path, "../LJSpeech-1.1/wavs/"),
|
||||
output_path=output_path,
|
||||
)
|
||||
args, config, output_path, _, c_logger, dashboard_logger = init_training(TrainingArgs(), config)
|
||||
trainer = Trainer(args, config, output_path, c_logger, dashboard_logger, cudnn_benchmark=True)
|
||||
|
||||
# init audio processor
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# load training samples
|
||||
eval_samples, train_samples = load_wav_data(config.data_path, config.eval_split_size)
|
||||
|
||||
# init model
|
||||
model = Wavernn(config)
|
||||
|
||||
# init the trainer and 🚀
|
||||
trainer = Trainer(
|
||||
TrainingArgs(),
|
||||
config,
|
||||
output_path,
|
||||
model=model,
|
||||
train_samples=train_samples,
|
||||
eval_samples=eval_samples,
|
||||
training_assets={"audio_processor": ap},
|
||||
)
|
||||
trainer.fit()
|
||||
|
|
Loading…
Reference in New Issue