From 5119e651a1dbccdc4e5fdb47dc386d33f378e621 Mon Sep 17 00:00:00 2001 From: Enno Hermann Date: Thu, 16 Nov 2023 23:52:28 +0100 Subject: [PATCH] chore(utils.io): remove unused code These are all available in Trainer. --- TTS/utils/io.py | 104 ------------------------------------------------ 1 file changed, 104 deletions(-) diff --git a/TTS/utils/io.py b/TTS/utils/io.py index 9ab1075c..7aaedbe2 100644 --- a/TTS/utils/io.py +++ b/TTS/utils/io.py @@ -1,4 +1,3 @@ -import datetime import json import os import pickle as pickle_tts @@ -8,7 +7,6 @@ from typing import Any, Callable, Dict, Union import fsspec import torch from coqpit import Coqpit -from trainer.io import save_fsspec from TTS.utils.generic_utils import get_user_data_dir @@ -101,105 +99,3 @@ def load_checkpoint( if eval: model.eval() return model, state - - -def save_model(config, model, optimizer, scaler, current_step, epoch, output_path, **kwargs): - if hasattr(model, "module"): - model_state = model.module.state_dict() - else: - model_state = model.state_dict() - if isinstance(optimizer, list): - optimizer_state = [optim.state_dict() for optim in optimizer] - elif optimizer.__class__.__name__ == "CapacitronOptimizer": - optimizer_state = [optimizer.primary_optimizer.state_dict(), optimizer.secondary_optimizer.state_dict()] - else: - optimizer_state = optimizer.state_dict() if optimizer is not None else None - - if isinstance(scaler, list): - scaler_state = [s.state_dict() for s in scaler] - else: - scaler_state = scaler.state_dict() if scaler is not None else None - - if isinstance(config, Coqpit): - config = config.to_dict() - - state = { - "config": config, - "model": model_state, - "optimizer": optimizer_state, - "scaler": scaler_state, - "step": current_step, - "epoch": epoch, - "date": datetime.date.today().strftime("%B %d, %Y"), - } - state.update(kwargs) - save_fsspec(state, output_path) - - -def save_checkpoint( - config, - model, - optimizer, - scaler, - current_step, - epoch, - output_folder, - **kwargs, -): - file_name = "checkpoint_{}.pth".format(current_step) - checkpoint_path = os.path.join(output_folder, file_name) - print("\n > CHECKPOINT : {}".format(checkpoint_path)) - save_model( - config, - model, - optimizer, - scaler, - current_step, - epoch, - checkpoint_path, - **kwargs, - ) - - -def save_best_model( - current_loss, - best_loss, - config, - model, - optimizer, - scaler, - current_step, - epoch, - out_path, - keep_all_best=False, - keep_after=10000, - **kwargs, -): - if current_loss < best_loss: - best_model_name = f"best_model_{current_step}.pth" - checkpoint_path = os.path.join(out_path, best_model_name) - print(" > BEST MODEL : {}".format(checkpoint_path)) - save_model( - config, - model, - optimizer, - scaler, - current_step, - epoch, - checkpoint_path, - model_loss=current_loss, - **kwargs, - ) - fs = fsspec.get_mapper(out_path).fs - # only delete previous if current is saved successfully - if not keep_all_best or (current_step < keep_after): - model_names = fs.glob(os.path.join(out_path, "best_model*.pth")) - for model_name in model_names: - if os.path.basename(model_name) != best_model_name: - fs.rm(model_name) - # create a shortcut which always points to the currently best model - shortcut_name = "best_model.pth" - shortcut_path = os.path.join(out_path, shortcut_name) - fs.copy(checkpoint_path, shortcut_path) - best_loss = current_loss - return best_loss