mirror of https://github.com/coqui-ai/TTS.git
Make preemphasis configurable based on config.json
This commit is contained in:
parent
e41ffa0ba5
commit
537a0e7022
|
@ -41,6 +41,7 @@ if __name__ == "__main__":
|
|||
ref_level_db = CONFIG.ref_level_db,
|
||||
num_freq = CONFIG.num_freq,
|
||||
power = CONFIG.power,
|
||||
preemphasis = CONFIG.preemphasis,
|
||||
min_mel_freq = CONFIG.min_mel_freq,
|
||||
max_mel_freq = CONFIG.max_mel_freq)
|
||||
|
||||
|
|
|
@ -11,8 +11,9 @@ _mel_basis = None
|
|||
class AudioProcessor(object):
|
||||
|
||||
def __init__(self, sample_rate, num_mels, min_level_db, frame_shift_ms,
|
||||
frame_length_ms, ref_level_db, num_freq, power,
|
||||
frame_length_ms, ref_level_db, num_freq, power, preemphasis,
|
||||
min_mel_freq, max_mel_freq, griffin_lim_iters=None):
|
||||
|
||||
self.sample_rate = sample_rate
|
||||
self.num_mels = num_mels
|
||||
self.min_level_db = min_level_db
|
||||
|
@ -21,9 +22,11 @@ class AudioProcessor(object):
|
|||
self.ref_level_db = ref_level_db
|
||||
self.num_freq = num_freq
|
||||
self.power = power
|
||||
self.preemphasis = preemphasis
|
||||
self.min_mel_freq = min_mel_freq
|
||||
self.max_mel_freq = max_mel_freq
|
||||
self.griffin_lim_iters = griffin_lim_iters
|
||||
self.n_fft, self.hop_length, self.win_length = self._stft_parameters()
|
||||
|
||||
def save_wav(self, wav, path):
|
||||
wav *= 32767 / max(0.01, np.max(np.abs(wav)))
|
||||
|
@ -60,14 +63,20 @@ class AudioProcessor(object):
|
|||
return np.power(10.0, x * 0.05)
|
||||
|
||||
def apply_preemphasis(self, x):
|
||||
return signal.lfilter([1, -0.97], [1], x)
|
||||
if self.preemphasis == 0:
|
||||
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
||||
return signal.lfilter([1, -self.preemphasis], [1], x)
|
||||
|
||||
def apply_inv_preemphasis(self, x):
|
||||
return signal.lfilter([1], [1, -0.97], x)
|
||||
if self.preemphasis == 0:
|
||||
raise RuntimeError(" !! Preemphasis is applied with factor 0.0. ")
|
||||
return signal.lfilter([1], [1, -self.preemphasis], x)
|
||||
|
||||
def spectrogram(self, y):
|
||||
D = self._stft(self.apply_preemphasis(y))
|
||||
# D = self._stft(apply_preemphasis(y))
|
||||
if self.preemphasis != 0:
|
||||
D = self._stft(self.apply_preemphasis(y))
|
||||
else:
|
||||
D = self._stft(y)
|
||||
S = self._amp_to_db(np.abs(D)) - self.ref_level_db
|
||||
return self._normalize(S)
|
||||
|
||||
|
@ -76,20 +85,10 @@ class AudioProcessor(object):
|
|||
S = self._denormalize(spectrogram)
|
||||
S = self._db_to_amp(S + self.ref_level_db) # Convert back to linear
|
||||
# Reconstruct phase
|
||||
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
||||
# return self._griffin_lim(S ** self.power)
|
||||
|
||||
# def _griffin_lim(self, S):
|
||||
# '''librosa implementation of Griffin-Lim
|
||||
# Based on https://github.com/librosa/librosa/issues/434
|
||||
# '''
|
||||
# angles = np.exp(2j * np.pi * np.random.rand(*S.shape))
|
||||
# S_complex = np.abs(S).astype(np.complex)
|
||||
# y = self._istft(S_complex * angles)
|
||||
# for i in range(self.griffin_lim_iters):
|
||||
# angles = np.exp(1j * np.angle(self._stft(y)))
|
||||
# y = self._istft(S_complex * angles)
|
||||
# return y
|
||||
if self.preemphasis != 0:
|
||||
return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power))
|
||||
else:
|
||||
return self._griffin_lim(S ** self.power)
|
||||
|
||||
def _griffin_lim(self, S):
|
||||
'''Applies Griffin-Lim's raw.
|
||||
|
@ -105,7 +104,10 @@ class AudioProcessor(object):
|
|||
return y
|
||||
|
||||
def melspectrogram(self, y):
|
||||
D = self._stft(self.apply_preemphasis(y))
|
||||
if self.preemphasis != 0:
|
||||
D = self._stft(self.apply_preemphasis(y))
|
||||
else:
|
||||
D = self._stft(y)
|
||||
S = self._amp_to_db(self._linear_to_mel(np.abs(D))) - self.ref_level_db
|
||||
return self._normalize(S)
|
||||
|
||||
|
|
Loading…
Reference in New Issue