formatting

This commit is contained in:
Eren Golge 2019-09-24 17:20:01 +02:00
parent 23f6743ac9
commit 53d658fb74
1 changed files with 48 additions and 54 deletions

View File

@ -20,12 +20,13 @@ def tts(model,
ap_vocoder,
use_cuda,
batched_vocoder,
speaker_id=None,
speaker_id=None,
figures=False):
t_1 = time.time()
use_vocoder_model = vocoder_model is not None
waveform, alignment, decoder_outputs, postnet_output, stop_tokens = synthesis(
model, text, C, use_cuda, ap, speaker_id, False, C.enable_eos_bos_chars)
waveform, alignment, _, postnet_output, stop_tokens = synthesis(
model, text, C, use_cuda, ap, speaker_id, False,
C.enable_eos_bos_chars)
if C.model == "Tacotron" and use_vocoder_model:
postnet_output = ap.out_linear_to_mel(postnet_output.T).T
# correct if there is a scale difference b/w two models
@ -45,13 +46,10 @@ def tts(model,
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
'text', type=str, help='Text to generate speech.')
parser.add_argument(
'config_path',
type=str,
help='Path to model config file.'
)
parser.add_argument('text', type=str, help='Text to generate speech.')
parser.add_argument('config_path',
type=str,
help='Path to model config file.')
parser.add_argument(
'model_path',
type=str,
@ -62,8 +60,10 @@ if __name__ == "__main__":
type=str,
help='Path to save final wav file.',
)
parser.add_argument(
'--use_cuda', type=bool, help='Run model on CUDA.', default=False)
parser.add_argument('--use_cuda',
type=bool,
help='Run model on CUDA.',
default=False)
parser.add_argument(
'--vocoder_path',
type=str,
@ -71,28 +71,24 @@ if __name__ == "__main__":
'Path to vocoder model file. If it is not defined, model uses GL as vocoder. Please make sure that you installed vocoder library before (WaveRNN).',
default="",
)
parser.add_argument(
'--vocoder_config_path',
type=str,
help='Path to vocoder model config file.',
default="")
parser.add_argument('--vocoder_config_path',
type=str,
help='Path to vocoder model config file.',
default="")
parser.add_argument(
'--batched_vocoder',
type=bool,
help="If True, vocoder model uses faster batch processing.",
default=True)
parser.add_argument(
'--speakers_json',
type=str,
help="JSON file for multi-speaker model.",
default=""
)
parser.add_argument('--speakers_json',
type=str,
help="JSON file for multi-speaker model.",
default="")
parser.add_argument(
'--speaker_id',
type=int,
help="target speaker_id if the model is multi-speaker.",
default=None
)
default=None)
args = parser.parse_args()
if args.vocoder_path != "":
@ -128,22 +124,20 @@ if __name__ == "__main__":
VC = load_config(args.vocoder_config_path)
ap_vocoder = AudioProcessor(**VC.audio)
bits = 10
vocoder_model = VocoderModel(
rnn_dims=512,
fc_dims=512,
mode=VC.mode,
mulaw=VC.mulaw,
pad=VC.pad,
upsample_factors=VC.upsample_factors,
feat_dims=VC.audio["num_mels"],
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=ap.hop_length,
sample_rate=ap.sample_rate,
use_aux_net=True,
use_upsample_net=True
)
vocoder_model = VocoderModel(rnn_dims=512,
fc_dims=512,
mode=VC.mode,
mulaw=VC.mulaw,
pad=VC.pad,
upsample_factors=VC.upsample_factors,
feat_dims=VC.audio["num_mels"],
compute_dims=128,
res_out_dims=128,
res_blocks=10,
hop_length=ap.hop_length,
sample_rate=ap.sample_rate,
use_aux_net=True,
use_upsample_net=True)
check = torch.load(args.vocoder_path)
vocoder_model.load_state_dict(check['model'])
@ -157,22 +151,22 @@ if __name__ == "__main__":
# synthesize voice
print(" > Text: {}".format(args.text))
_, _, _, wav = tts(
model,
vocoder_model,
C,
VC,
args.text,
ap,
ap_vocoder,
args.use_cuda,
args.batched_vocoder,
speaker_id=args.speaker_id,
figures=False)
_, _, _, wav = tts(model,
vocoder_model,
C,
VC,
args.text,
ap,
ap_vocoder,
args.use_cuda,
args.batched_vocoder,
speaker_id=args.speaker_id,
figures=False)
# save the results
file_name = args.text.replace(" ", "_")
file_name = file_name.translate(str.maketrans('', '', string.punctuation.replace('_', '')))+'.wav'
file_name = file_name.translate(
str.maketrans('', '', string.punctuation.replace('_', ''))) + '.wav'
out_path = os.path.join(args.out_path, file_name)
print(" > Saving output to {}".format(out_path))
ap.save_wav(wav, out_path)