Update README.md

This commit is contained in:
Eren Gölge 2021-01-27 11:26:38 +01:00 committed by GitHub
parent 71e24f4222
commit 54139f6333
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
1 changed files with 18 additions and 10 deletions

View File

@ -97,13 +97,13 @@ TTS supports **python >= 3.6, <3.9**.
If you are only interested in [synthesizing speech](https://github.com/mozilla/TTS/tree/dev#example-synthesizing-speech-on-terminal-using-the-released-models) with the released TTS models, installing from PyPI is the easiest option.
```
```bash
pip install TTS
```
If you plan to code or train models, clone TTS and install it locally.
```
```bash
git clone https://github.com/mozilla/TTS
pip install -e .
```
@ -157,12 +157,12 @@ Some of the public datasets that we successfully applied TTS:
After the installation, TTS provides a CLI interface for synthesizing speech using pre-trained models. You can either use your own model or the release models under the TTS project.
Listing released TTS models.
```
```bash
tts --list_models
```
Run a tts and a vocoder model from the released model list. (Simply copy and paste the full model names from the list as arguments for the command below.)
```console
```bash
tts --text "Text for TTS" \
--model_name "<type>/<language>/<dataset>/<model_name>" \
--vocoder_name "<type>/<language>/<dataset>/<model_name>" \
@ -170,7 +170,7 @@ tts --text "Text for TTS" \
```
Run your own TTS model (Using Griffin-Lim Vocoder)
```console
```bash
tts --text "Text for TTS" \
--model_path path/to/model.pth.tar \
--config_path path/to/config.json \
@ -178,7 +178,7 @@ tts --text "Text for TTS" \
```
Run your own TTS and Vocoder models
```console
```bash
tts --text "Text for TTS" \
--model_path path/to/config.json \
--config_path path/to/model.pth.tar \
@ -204,19 +204,27 @@ To train a new model, you need to define your own ```config.json``` to define mo
For instance, in order to train a tacotron or tacotron2 model on LJSpeech dataset, follow these steps.
```python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json```
```bash
python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json
```
To fine-tune a model, use ```--restore_path```.
```python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json --restore_path /path/to/your/model.pth.tar```
```bash
python TTS/bin/train_tacotron.py --config_path TTS/tts/configs/config.json --restore_path /path/to/your/model.pth.tar
```
To continue an old training run, use ```--continue_path```.
```python TTS/bin/train_tacotron.py --continue_path /path/to/your/run_folder/```
```bash
python TTS/bin/train_tacotron.py --continue_path /path/to/your/run_folder/
```
For multi-GPU training, call ```distribute.py```. It runs any provided train script in multi-GPU setting.
```CUDA_VISIBLE_DEVICES="0,1,4" python TTS/bin/distribute.py --script train_tacotron.py --config_path TTS/tts/configs/config.json```
```bash
CUDA_VISIBLE_DEVICES="0,1,4" python TTS/bin/distribute.py --script train_tacotron.py --config_path TTS/tts/configs/config.json
```
Each run creates a new output folder accomodating used ```config.json```, model checkpoints and tensorboard logs.