mirror of https://github.com/coqui-ai/TTS.git
Soem bug fixes
This commit is contained in:
parent
4431e04b48
commit
562d73d3d1
|
@ -10,9 +10,9 @@
|
||||||
"sample_rate": 16000, // wav sample-rate. If different than the original data, it is resampled.
|
"sample_rate": 16000, // wav sample-rate. If different than the original data, it is resampled.
|
||||||
"frame_length_ms": 50, // stft window length in ms.
|
"frame_length_ms": 50, // stft window length in ms.
|
||||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
||||||
"preemphasis": 0.97, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||||
"min_level_db": -100, // normalization range
|
"min_level_db": -100, // normalization range
|
||||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
"ref_level_db": 40, // reference level db, theoretically 20db is the sound of air.
|
||||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||||
// Normalization parameters
|
// Normalization parameters
|
||||||
|
@ -52,7 +52,7 @@
|
||||||
"output_path": "/media/erogol/data_ssd/Data/models/en_UK/", // DATASET-RELATED: output path for all training outputs.
|
"output_path": "/media/erogol/data_ssd/Data/models/en_UK/", // DATASET-RELATED: output path for all training outputs.
|
||||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||||
"phoneme_cache_path": "tmp_en_uk", // phoneme computation is slow, therefore, it caches results in the given folder.
|
"phoneme_cache_path": "tmp_phonemes_gb", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||||
"phoneme_language": "en-us" // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
"phoneme_language": "en-gb" // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||||
}
|
}
|
||||||
|
|
|
@ -413,7 +413,7 @@ class Decoder(nn.Module):
|
||||||
for idx in range(len(self.decoder_rnns)):
|
for idx in range(len(self.decoder_rnns)):
|
||||||
decoder_rnn_hiddens[idx] = self.decoder_rnns[idx](
|
decoder_rnn_hiddens[idx] = self.decoder_rnns[idx](
|
||||||
decoder_input, decoder_rnn_hiddens[idx])
|
decoder_input, decoder_rnn_hiddens[idx])
|
||||||
# Residual connectinon
|
# Residual connection
|
||||||
decoder_input = decoder_rnn_hiddens[idx] + decoder_input
|
decoder_input = decoder_rnn_hiddens[idx] + decoder_input
|
||||||
decoder_output = decoder_input
|
decoder_output = decoder_input
|
||||||
del decoder_input
|
del decoder_input
|
||||||
|
|
Loading…
Reference in New Issue