diff --git a/train.py b/train.py index e5fdc12f..f23f3d01 100644 --- a/train.py +++ b/train.py @@ -347,9 +347,7 @@ def main(args): ref_level_db=c.ref_level_db, num_freq=c.num_freq, power=c.power, - preemphasis=c.preemphasis, - min_mel_freq=c.min_mel_freq, - max_mel_freq=c.max_mel_freq) + preemphasis=c.preemphasis) # Setup the dataset train_dataset = Dataset( diff --git a/utils/audio.py b/utils/audio.py index a3805635..51fd3bbf 100644 --- a/utils/audio.py +++ b/utils/audio.py @@ -19,8 +19,6 @@ class AudioProcessor(object): num_freq, power, preemphasis, - min_mel_freq, - max_mel_freq, griffin_lim_iters=None): print(" > Setting up Audio Processor...") @@ -33,8 +31,6 @@ class AudioProcessor(object): self.num_freq = num_freq self.power = power self.preemphasis = preemphasis - self.min_mel_freq = min_mel_freq - self.max_mel_freq = max_mel_freq self.griffin_lim_iters = griffin_lim_iters self.n_fft, self.hop_length, self.win_length = self._stft_parameters() if preemphasis == 0: @@ -54,7 +50,6 @@ class AudioProcessor(object): n_fft = (self.num_freq - 1) * 2 return librosa.filters.mel( self.sample_rate, n_fft, n_mels=self.num_mels) - # fmin=self.min_mel_freq, fmax=self.max_mel_freq) def _normalize(self, S): return np.clip((S - self.min_level_db) / -self.min_level_db, 0, 1) @@ -105,19 +100,6 @@ class AudioProcessor(object): else: return self._griffin_lim(S**self.power) - # def _griffin_lim(self, S): - # '''Applies Griffin-Lim's raw. - # ''' - # S_best = copy.deepcopy(S) - # for i in range(self.griffin_lim_iters): - # S_t = self._istft(S_best) - # est = self._stft(S_t) - # phase = est / np.maximum(1e-8, np.abs(est)) - # S_best = S * phase - # S_t = self._istft(S_best) - # y = np.real(S_t) - # return y - def _griffin_lim(self, S): angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex)