mirror of https://github.com/coqui-ai/TTS.git
Add compute encoder accuracy in a function
This commit is contained in:
parent
b0bad56ba9
commit
570edb7e93
|
@ -8,6 +8,49 @@ from TTS.config import load_config
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.utils.speakers import SpeakerManager
|
from TTS.tts.utils.speakers import SpeakerManager
|
||||||
|
|
||||||
|
def compute_encoder_accuracy(dataset_items, encoder_manager):
|
||||||
|
|
||||||
|
class_name_key = encoder_manager.speaker_encoder_config.class_name_key
|
||||||
|
map_classid_to_classname = getattr(encoder_manager.speaker_encoder_config, 'map_classid_to_classname', None)
|
||||||
|
|
||||||
|
class_acc_dict = {}
|
||||||
|
|
||||||
|
# compute embeddings for all wav_files
|
||||||
|
for item in tqdm(dataset_items):
|
||||||
|
class_name = item[class_name_key]
|
||||||
|
wav_file = item["audio_file"]
|
||||||
|
|
||||||
|
# extract the embedding
|
||||||
|
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)
|
||||||
|
if encoder_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
|
||||||
|
embedding = torch.FloatTensor(embedd).unsqueeze(0)
|
||||||
|
if encoder_manager.use_cuda:
|
||||||
|
embedding = embedding.cuda()
|
||||||
|
|
||||||
|
class_id = encoder_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
|
||||||
|
predicted_label = map_classid_to_classname[str(class_id)]
|
||||||
|
else:
|
||||||
|
predicted_label = None
|
||||||
|
|
||||||
|
if class_name is not None and predicted_label is not None:
|
||||||
|
is_equal = int(class_name == predicted_label)
|
||||||
|
if class_name not in class_acc_dict:
|
||||||
|
class_acc_dict[class_name] = [is_equal]
|
||||||
|
else:
|
||||||
|
class_acc_dict[class_name].append(is_equal)
|
||||||
|
else:
|
||||||
|
raise RuntimeError("Error: class_name or/and predicted_label are None")
|
||||||
|
|
||||||
|
acc_avg = 0
|
||||||
|
for key, values in class_acc_dict.items():
|
||||||
|
acc = sum(values)/len(values)
|
||||||
|
print("Class", key, "Accuracy:", acc)
|
||||||
|
acc_avg += acc
|
||||||
|
|
||||||
|
print("Average Accuracy:", acc_avg/len(class_acc_dict))
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
parser = argparse.ArgumentParser(
|
parser = argparse.ArgumentParser(
|
||||||
description="""Compute the accuracy of the encoder.\n\n"""
|
description="""Compute the accuracy of the encoder.\n\n"""
|
||||||
"""
|
"""
|
||||||
|
@ -36,51 +79,10 @@ args = parser.parse_args()
|
||||||
c_dataset = load_config(args.config_dataset_path)
|
c_dataset = load_config(args.config_dataset_path)
|
||||||
|
|
||||||
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
|
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
|
||||||
wav_files = meta_data_train + meta_data_eval
|
items = meta_data_train + meta_data_eval
|
||||||
|
|
||||||
encoder_manager = SpeakerManager(
|
enc_manager = SpeakerManager(
|
||||||
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
|
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
|
||||||
)
|
)
|
||||||
|
|
||||||
class_name_key = encoder_manager.speaker_encoder_config.class_name_key
|
compute_encoder_accuracy(items, enc_manager)
|
||||||
|
|
||||||
map_classid_to_classname = getattr(encoder_manager.speaker_encoder_config, 'map_classid_to_classname', None)
|
|
||||||
|
|
||||||
# compute speaker embeddings
|
|
||||||
class_acc_dict = {}
|
|
||||||
|
|
||||||
for idx, wav_file in enumerate(tqdm(wav_files)):
|
|
||||||
if isinstance(wav_file, dict):
|
|
||||||
class_name = wav_file[class_name_key]
|
|
||||||
wav_file = wav_file["audio_file"]
|
|
||||||
else:
|
|
||||||
class_name = None
|
|
||||||
|
|
||||||
# extract the embedding
|
|
||||||
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)
|
|
||||||
if encoder_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
|
|
||||||
embedding = torch.FloatTensor(embedd).unsqueeze(0)
|
|
||||||
if args.use_cuda:
|
|
||||||
embedding = embedding.cuda()
|
|
||||||
|
|
||||||
class_id = encoder_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
|
|
||||||
predicted_label = map_classid_to_classname[str(class_id)]
|
|
||||||
else:
|
|
||||||
predicted_label = None
|
|
||||||
|
|
||||||
if class_name is not None and predicted_label is not None:
|
|
||||||
is_equal = int(class_name == predicted_label)
|
|
||||||
if class_name not in class_acc_dict:
|
|
||||||
class_acc_dict[class_name] = [is_equal]
|
|
||||||
else:
|
|
||||||
class_acc_dict[class_name].append(is_equal)
|
|
||||||
else:
|
|
||||||
raise RuntimeError("Error: class_name or/and predicted_label are None")
|
|
||||||
|
|
||||||
acc_avg = 0
|
|
||||||
for key, values in class_acc_dict.items():
|
|
||||||
acc = sum(values)/len(values)
|
|
||||||
print("Class", key, "Accuracy:", acc)
|
|
||||||
acc_avg += acc
|
|
||||||
|
|
||||||
print("Average Accuracy:", acc_avg/len(class_acc_dict))
|
|
||||||
|
|
Loading…
Reference in New Issue