Add compute encoder accuracy in a function

This commit is contained in:
Edresson Casanova 2022-03-11 09:39:22 -03:00
parent b0bad56ba9
commit 570edb7e93
1 changed files with 70 additions and 68 deletions

View File

@ -8,6 +8,49 @@ from TTS.config import load_config
from TTS.tts.datasets import load_tts_samples
from TTS.tts.utils.speakers import SpeakerManager
def compute_encoder_accuracy(dataset_items, encoder_manager):
class_name_key = encoder_manager.speaker_encoder_config.class_name_key
map_classid_to_classname = getattr(encoder_manager.speaker_encoder_config, 'map_classid_to_classname', None)
class_acc_dict = {}
# compute embeddings for all wav_files
for item in tqdm(dataset_items):
class_name = item[class_name_key]
wav_file = item["audio_file"]
# extract the embedding
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)
if encoder_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if encoder_manager.use_cuda:
embedding = embedding.cuda()
class_id = encoder_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
predicted_label = map_classid_to_classname[str(class_id)]
else:
predicted_label = None
if class_name is not None and predicted_label is not None:
is_equal = int(class_name == predicted_label)
if class_name not in class_acc_dict:
class_acc_dict[class_name] = [is_equal]
else:
class_acc_dict[class_name].append(is_equal)
else:
raise RuntimeError("Error: class_name or/and predicted_label are None")
acc_avg = 0
for key, values in class_acc_dict.items():
acc = sum(values)/len(values)
print("Class", key, "Accuracy:", acc)
acc_avg += acc
print("Average Accuracy:", acc_avg/len(class_acc_dict))
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description="""Compute the accuracy of the encoder.\n\n"""
"""
@ -36,51 +79,10 @@ args = parser.parse_args()
c_dataset = load_config(args.config_dataset_path)
meta_data_train, meta_data_eval = load_tts_samples(c_dataset.datasets, eval_split=args.eval)
wav_files = meta_data_train + meta_data_eval
items = meta_data_train + meta_data_eval
encoder_manager = SpeakerManager(
enc_manager = SpeakerManager(
encoder_model_path=args.model_path, encoder_config_path=args.config_path, use_cuda=args.use_cuda
)
class_name_key = encoder_manager.speaker_encoder_config.class_name_key
map_classid_to_classname = getattr(encoder_manager.speaker_encoder_config, 'map_classid_to_classname', None)
# compute speaker embeddings
class_acc_dict = {}
for idx, wav_file in enumerate(tqdm(wav_files)):
if isinstance(wav_file, dict):
class_name = wav_file[class_name_key]
wav_file = wav_file["audio_file"]
else:
class_name = None
# extract the embedding
embedd = encoder_manager.compute_d_vector_from_clip(wav_file)
if encoder_manager.speaker_encoder_criterion is not None and map_classid_to_classname is not None:
embedding = torch.FloatTensor(embedd).unsqueeze(0)
if args.use_cuda:
embedding = embedding.cuda()
class_id = encoder_manager.speaker_encoder_criterion.softmax.inference(embedding).item()
predicted_label = map_classid_to_classname[str(class_id)]
else:
predicted_label = None
if class_name is not None and predicted_label is not None:
is_equal = int(class_name == predicted_label)
if class_name not in class_acc_dict:
class_acc_dict[class_name] = [is_equal]
else:
class_acc_dict[class_name].append(is_equal)
else:
raise RuntimeError("Error: class_name or/and predicted_label are None")
acc_avg = 0
for key, values in class_acc_dict.items():
acc = sum(values)/len(values)
print("Class", key, "Accuracy:", acc)
acc_avg += acc
print("Average Accuracy:", acc_avg/len(class_acc_dict))
compute_encoder_accuracy(items, enc_manager)