mirror of https://github.com/coqui-ai/TTS.git
loss bug fix
This commit is contained in:
parent
0582346969
commit
58257c4a06
|
@ -27,11 +27,11 @@ class L1LossMasked(nn.Module):
|
||||||
def forward(self, input, target, length):
|
def forward(self, input, target, length):
|
||||||
"""
|
"""
|
||||||
Args:
|
Args:
|
||||||
logits: A Variable containing a FloatTensor of size
|
input: A Variable containing a FloatTensor of size
|
||||||
(batch, max_len, num_classes) which contains the
|
(batch, max_len, dim) which contains the
|
||||||
unnormalized probability for each class.
|
unnormalized probability for each class.
|
||||||
target: A Variable containing a LongTensor of size
|
target: A Variable containing a LongTensor of size
|
||||||
(batch, max_len) which contains the index of the true
|
(batch, max_len, dim) which contains the index of the true
|
||||||
class for each corresponding step.
|
class for each corresponding step.
|
||||||
length: A Variable containing a LongTensor of size (batch,)
|
length: A Variable containing a LongTensor of size (batch,)
|
||||||
which contains the length of each data in a batch.
|
which contains the length of each data in a batch.
|
||||||
|
@ -42,12 +42,12 @@ class L1LossMasked(nn.Module):
|
||||||
target = target.contiguous()
|
target = target.contiguous()
|
||||||
|
|
||||||
# logits_flat: (batch * max_len, dim)
|
# logits_flat: (batch * max_len, dim)
|
||||||
input = input.view(-1, input.size(-1))
|
input = input.view(-1, input.shape[-1])
|
||||||
# target_flat: (batch * max_len, dim)
|
# target_flat: (batch * max_len, dim)
|
||||||
target_flat = target.view(-1, 1)
|
target_flat = target.view(-1, target.shape[-1])
|
||||||
# losses_flat: (batch * max_len, dim)
|
# losses_flat: (batch * max_len, dim)
|
||||||
losses_flat = functional.l1_loss(input, target, size_average=False,
|
losses_flat = functional.l1_loss(input, target, size_average=False,
|
||||||
reduce=False)
|
reduce=False)
|
||||||
# losses: (batch, max_len, dim)
|
# losses: (batch, max_len, dim)
|
||||||
losses = losses_flat.view(*target.size())
|
losses = losses_flat.view(*target.size())
|
||||||
# mask: (batch, max_len, 1)
|
# mask: (batch, max_len, 1)
|
||||||
|
|
|
@ -2,7 +2,7 @@ import unittest
|
||||||
import torch as T
|
import torch as T
|
||||||
|
|
||||||
from TTS.layers.tacotron import Prenet, CBHG, Decoder, Encoder
|
from TTS.layers.tacotron import Prenet, CBHG, Decoder, Encoder
|
||||||
from layers.losses import L1LossMasked, _sequence_mask
|
from TTS.layers.losses import L1LossMasked, _sequence_mask
|
||||||
|
|
||||||
|
|
||||||
class PrenetTests(unittest.TestCase):
|
class PrenetTests(unittest.TestCase):
|
||||||
|
@ -66,7 +66,7 @@ class L1LossMaskedTests(unittest.TestCase):
|
||||||
dummy_target = T.autograd.Variable(T.ones(4, 8, 128).float())
|
dummy_target = T.autograd.Variable(T.ones(4, 8, 128).float())
|
||||||
dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
|
dummy_length = T.autograd.Variable((T.ones(4) * 8).long())
|
||||||
output = layer(dummy_input, dummy_target, dummy_length)
|
output = layer(dummy_input, dummy_target, dummy_length)
|
||||||
assert output.shape[0] == 1
|
assert output.shape[0] == 0
|
||||||
assert len(output.shape) == 1
|
assert len(output.shape) == 1
|
||||||
assert output.data[0] == 0.0
|
assert output.data[0] == 0.0
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue