Add script for extract VITS MAS alignments

This commit is contained in:
Edresson Casanova 2022-06-16 19:07:10 +00:00
parent 92e7391a5d
commit 5859e6474c
1 changed files with 133 additions and 0 deletions

View File

@ -0,0 +1,133 @@
#!/usr/bin/env python3
"""Extract Mel spectrograms with teacher forcing."""
import argparse
import os
import numpy as np
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from TTS.config import load_config
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.generic_utils import count_parameters
from trainer.generic_utils import to_cuda
use_cuda = torch.cuda.is_available()
def extract_aligments(
data_loader, model, output_path, use_cuda=True
):
model.eval()
export_metadata = []
for _, batch in tqdm(enumerate(data_loader), total=len(data_loader)):
batch = model.format_batch(batch)
if use_cuda:
for k, v in batch.items():
batch[k] = to_cuda(v)
batch = model.format_batch_on_device(batch)
spec_lens = batch["spec_lens"]
tokens = batch["tokens"]
token_lenghts = batch["token_lens"]
spec = batch["spec"]
d_vectors = batch["d_vectors"]
speaker_ids = batch["speaker_ids"]
language_ids = batch["language_ids"]
emotion_embeddings = batch["emotion_embeddings"]
emotion_ids = batch["emotion_ids"]
waveform = batch["waveform"]
item_idx = batch["audio_files"]
# generator pass
outputs = model.forward(
tokens,
token_lenghts,
spec,
spec_lens,
waveform,
aux_input={
"d_vectors": d_vectors,
"speaker_ids": speaker_ids,
"language_ids": language_ids,
"emotion_embeddings": emotion_embeddings,
"emotion_ids": emotion_ids,
},
)
alignments = outputs["alignments"].detach().cpu().numpy()
for idx in range(tokens.shape[0]):
wav_file_path = item_idx[idx]
alignment = alignments[idx]
# set paths
align_file_name = os.path.splitext(os.path.basename(wav_file_path))[0] + ".npy"
os.makedirs(os.path.join(output_path, "alignments"), exist_ok=True)
align_file_path = os.path.join(output_path, "alignments", align_file_name)
np.save(align_file_path, alignment)
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data, speaker_manager
# load data instances
meta_data_train, meta_data_eval = load_tts_samples(
c.datasets, eval_split=args.eval, eval_split_max_size=c.eval_split_max_size, eval_split_size=c.eval_split_size
)
# use eval and training partitions
meta_data = meta_data_train + meta_data_eval
# setup model
model = setup_model(c, meta_data)
# restore model
model.load_checkpoint(c, args.checkpoint_path, eval=False)
model = model.eval()
if use_cuda:
model.cuda()
num_params = count_parameters(model)
print("\n > Model has {} parameters".format(num_params), flush=True)
own_loader = model.get_data_loader(config=model.config,
assets={},
is_eval=False,
samples=meta_data,
verbose=True,
num_gpus=1,
)
extract_aligments(
own_loader,
model,
args.output_path,
use_cuda=use_cuda,
)
if __name__ == "__main__":
# python3 TTS/bin/extract_tts_audio.py --config_path /raid/edresson/dev/Checkpoints/YourTTS/new_vctk_trimmed_silence/upsampling/YourTTS_22khz--\>44khz_vocoder_approach_frozen/YourTTS_22khz--\>44khz_vocoder_approach_frozen-April-02-2022_08+23PM-a5f5ebae/config.json --checkpoint_path /raid/edresson/dev/Checkpoints/YourTTS/new_vctk_trimmed_silence/upsampling/YourTTS_22khz--\>44khz_vocoder_approach_frozen/YourTTS_22khz--\>44khz_vocoder_approach_frozen-April-02-2022_08+23PM-a5f5ebae/checkpoint_1600000.pth --output_path ../Test_extract_audio_script/
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", type=str, help="Path to config file for training.", required=True)
parser.add_argument("--checkpoint_path", type=str, help="Model file to be restored.", required=True)
parser.add_argument("--output_path", type=str, help="Path to save mel specs", required=True)
parser.add_argument("--eval", type=bool, help="compute eval.", default=True)
args = parser.parse_args()
c = load_config(args.config_path)
# disable samplers
c.use_speaker_weighted_sampler = False
c.use_language_weighted_sampler = False
c.use_length_weighted_sampler = False
c.use_style_weighted_sampler = False
main(args)