Fix style

This commit is contained in:
Eren Gölge 2022-03-23 09:48:28 +01:00
parent 72d85e53c9
commit 585e9aa4f0
20 changed files with 108 additions and 20 deletions

View File

@ -27,6 +27,7 @@ DEF_LANG_TO_PHONEMIZER["en"] = DEF_LANG_TO_PHONEMIZER["en-us"]
DEF_LANG_TO_PHONEMIZER["ja-jp"] = JA_JP_Phonemizer.name() DEF_LANG_TO_PHONEMIZER["ja-jp"] = JA_JP_Phonemizer.name()
DEF_LANG_TO_PHONEMIZER["zh-cn"] = ZH_CN_Phonemizer.name() DEF_LANG_TO_PHONEMIZER["zh-cn"] = ZH_CN_Phonemizer.name()
def get_phonemizer_by_name(name: str, **kwargs) -> BasePhonemizer: def get_phonemizer_by_name(name: str, **kwargs) -> BasePhonemizer:
"""Initiate a phonemizer by name """Initiate a phonemizer by name

View File

@ -371,7 +371,9 @@ class AudioProcessor(object):
self.hop_length = hop_length self.hop_length = hop_length
self.win_length = win_length self.win_length = win_length
assert min_level_db != 0.0, " [!] min_level_db is 0" assert min_level_db != 0.0, " [!] min_level_db is 0"
assert self.win_length <= self.fft_size, f" [!] win_length cannot be larger than fft_size - {self.win_length} vs {self.fft_size}" assert (
self.win_length <= self.fft_size
), f" [!] win_length cannot be larger than fft_size - {self.win_length} vs {self.fft_size}"
members = vars(self) members = vars(self)
if verbose: if verbose:
print(" > Setting up Audio Processor...") print(" > Setting up Audio Processor...")

View File

@ -3,8 +3,8 @@ import json
import os import os
import zipfile import zipfile
from pathlib import Path from pathlib import Path
from typing import Tuple
from shutil import copyfile, rmtree from shutil import copyfile, rmtree
from typing import Tuple
import requests import requests
@ -144,7 +144,7 @@ class ModelManager(object):
output_model_path, output_config_path = self._find_files(output_path) output_model_path, output_config_path = self._find_files(output_path)
return output_model_path, output_config_path, model_item return output_model_path, output_config_path, model_item
def _find_files(self, output_path:str) -> Tuple[str, str]: def _find_files(self, output_path: str) -> Tuple[str, str]:
"""Find the model and config files in the output path """Find the model and config files in the output path
Args: Args:

View File

@ -49,7 +49,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init model # init model
model = AlignTTS(config, ap, tokenizer) model = AlignTTS(config, ap, tokenizer)

View File

@ -84,7 +84,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the model # init the model
model = ForwardTTS(config, ap, tokenizer, speaker_manager=None) model = ForwardTTS(config, ap, tokenizer, speaker_manager=None)

View File

@ -83,7 +83,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init the model # init the model
model = ForwardTTS(config, ap, tokenizer) model = ForwardTTS(config, ap, tokenizer)

View File

@ -60,7 +60,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# INITIALIZE THE MODEL # INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input # Models take a config object and a speaker manager as input

View File

@ -67,7 +67,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init model # init model
model = ForwardTTS(config, ap, tokenizer) model = ForwardTTS(config, ap, tokenizer)

View File

@ -77,7 +77,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# INITIALIZE THE MODEL # INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input # Models take a config object and a speaker manager as input

View File

@ -74,7 +74,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# INITIALIZE THE MODEL # INITIALIZE THE MODEL
# Models take a config object and a speaker manager as input # Models take a config object and a speaker manager as input

View File

@ -69,7 +69,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init model # init model
model = Vits(config, ap, tokenizer, speaker_manager=None) model = Vits(config, ap, tokenizer, speaker_manager=None)

View File

@ -109,7 +109,12 @@ config.from_dict(config.to_dict())
ap = AudioProcessor(**config.audio.to_dict()) ap = AudioProcessor(**config.audio.to_dict())
# load training samples # load training samples
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader

View File

@ -71,7 +71,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader

View File

@ -69,7 +69,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader

View File

@ -72,7 +72,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader # it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -78,7 +78,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader # it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -78,7 +78,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it mainly handles speaker-id to speaker-name for the model and the data-loader # it mainly handles speaker-id to speaker-name for the model and the data-loader

View File

@ -79,7 +79,12 @@ tokenizer, config = TTSTokenizer.init_from_config(config)
# You can define your custom sample loader returning the list of samples. # You can define your custom sample loader returning the list of samples.
# Or define your custom formatter and pass it to the `load_tts_samples`. # Or define your custom formatter and pass it to the `load_tts_samples`.
# Check `TTS.tts.datasets.load_tts_samples` for more details. # Check `TTS.tts.datasets.load_tts_samples` for more details.
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True, eval_split_max_size=config.eval_split_max_size, eval_split_size=config.eval_split_size) train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
eval_split_max_size=config.eval_split_max_size,
eval_split_size=config.eval_split_size,
)
# init speaker manager for multi-speaker training # init speaker manager for multi-speaker training
# it maps speaker-id to speaker-name in the model and data-loader # it maps speaker-id to speaker-name in the model and data-loader