From 58784ad09c05a5d07d3b86cd53b89e34972e34bc Mon Sep 17 00:00:00 2001 From: erogol Date: Fri, 19 Jun 2020 12:25:03 +0200 Subject: [PATCH] renaming for melgan generator --- vocoder/layers/melgan.py | 2 +- vocoder/layers/pqmf.py | 2 -- vocoder/models/melgan_generator.py | 14 +++++++------- 3 files changed, 8 insertions(+), 10 deletions(-) diff --git a/vocoder/layers/melgan.py b/vocoder/layers/melgan.py index 61f7a96b..58c12a2e 100644 --- a/vocoder/layers/melgan.py +++ b/vocoder/layers/melgan.py @@ -21,7 +21,7 @@ class ResidualStack(nn.Module): nn.Conv1d(channels, channels, kernel_size=kernel_size, - dilation=layer_padding, + dilation=layer_dilation, bias=True)), nn.LeakyReLU(0.2), weight_norm( diff --git a/vocoder/layers/pqmf.py b/vocoder/layers/pqmf.py index 3985aad4..ef5a3507 100644 --- a/vocoder/layers/pqmf.py +++ b/vocoder/layers/pqmf.py @@ -1,5 +1,3 @@ -"""Pseudo QMF modules.""" - import numpy as np import torch import torch.nn.functional as F diff --git a/vocoder/models/melgan_generator.py b/vocoder/models/melgan_generator.py index e69e6ef3..01b52ea8 100644 --- a/vocoder/models/melgan_generator.py +++ b/vocoder/models/melgan_generator.py @@ -77,16 +77,16 @@ class MelganGenerator(nn.Module): ] self.layers = nn.Sequential(*layers) - def forward(self, cond_features): - return self.layers(cond_features) + def forward(self, c): + return self.layers(c) - def inference(self, cond_features): - cond_features = cond_features.to(self.layers[1].weight.device) - cond_features = torch.nn.functional.pad( - cond_features, + def inference(self, c): + c = c.to(self.layers[1].weight.device) + c = torch.nn.functional.pad( + c, (self.inference_padding, self.inference_padding), 'replicate') - return self.layers(cond_features) + return self.layers(c) def remove_weight_norm(self): for _, layer in enumerate(self.layers):