From 59e1cf99d0dc5b00e276c72348737f2613f163e5 Mon Sep 17 00:00:00 2001 From: erogol Date: Wed, 28 Oct 2020 18:30:00 +0100 Subject: [PATCH] config update and ssim implementation --- TTS/tts/configs/config.json | 1 + TTS/tts/utils/ssim.py | 75 +++++++++++++++++++++++++++++++++++++ 2 files changed, 76 insertions(+) create mode 100644 TTS/tts/utils/ssim.py diff --git a/TTS/tts/configs/config.json b/TTS/tts/configs/config.json index 4d3e2674..2cad69c3 100644 --- a/TTS/tts/configs/config.json +++ b/TTS/tts/configs/config.json @@ -76,6 +76,7 @@ "decoder_ssim_alpha": 0.5, // decoder ssim loss weight. If > 0, it is enabled "postnet_ssim_alpha": 0.25, // postnet ssim loss weight. If > 0, it is enabled "ga_alpha": 5.0, // weight for guided attention loss. If > 0, guided attention is enabled. + "stopnet_pos_weight": 15.0, // pos class weight for stopnet loss since there are way more negative samples than positive samples. // VALIDATION diff --git a/TTS/tts/utils/ssim.py b/TTS/tts/utils/ssim.py new file mode 100644 index 00000000..c370f5e5 --- /dev/null +++ b/TTS/tts/utils/ssim.py @@ -0,0 +1,75 @@ +# taken from https://github.com/Po-Hsun-Su/pytorch-ssim + +import torch +import torch.nn.functional as F +from torch.autograd import Variable +import numpy as np +from math import exp + +def gaussian(window_size, sigma): + gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)]) + return gauss/gauss.sum() + +def create_window(window_size, channel): + _1D_window = gaussian(window_size, 1.5).unsqueeze(1) + _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0) + window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous()) + return window + +def _ssim(img1, img2, window, window_size, channel, size_average = True): + mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel) + mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel) + + mu1_sq = mu1.pow(2) + mu2_sq = mu2.pow(2) + mu1_mu2 = mu1*mu2 + + sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sq + sigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sq + sigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2 + + C1 = 0.01**2 + C2 = 0.03**2 + + ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2)) + + if size_average: + return ssim_map.mean() + else: + return ssim_map.mean(1).mean(1).mean(1) + +class SSIM(torch.nn.Module): + def __init__(self, window_size = 11, size_average = True): + super(SSIM, self).__init__() + self.window_size = window_size + self.size_average = size_average + self.channel = 1 + self.window = create_window(window_size, self.channel) + + def forward(self, img1, img2): + (_, channel, _, _) = img1.size() + + if channel == self.channel and self.window.data.type() == img1.data.type(): + window = self.window + else: + window = create_window(self.window_size, channel) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + self.window = window + self.channel = channel + + + return _ssim(img1, img2, window, self.window_size, channel, self.size_average) + +def ssim(img1, img2, window_size = 11, size_average = True): + (_, channel, _, _) = img1.size() + window = create_window(window_size, channel) + + if img1.is_cuda: + window = window.cuda(img1.get_device()) + window = window.type_as(img1) + + return _ssim(img1, img2, window, window_size, channel, size_average) \ No newline at end of file