mirror of https://github.com/coqui-ai/TTS.git
Add yin based pitch computation
This commit is contained in:
parent
c448571c3c
commit
5a6ffaee08
|
@ -0,0 +1,118 @@
|
|||
# adapted from https://github.com/patriceguyot/Yin
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def differenceFunction(x, N, tau_max):
|
||||
"""
|
||||
Compute difference function of data x. This corresponds to equation (6) in [1]
|
||||
This solution is implemented directly with Numpy fft.
|
||||
|
||||
|
||||
:param x: audio data
|
||||
:param N: length of data
|
||||
:param tau_max: integration window size
|
||||
:return: difference function
|
||||
:rtype: list
|
||||
"""
|
||||
|
||||
x = np.array(x, np.float64)
|
||||
w = x.size
|
||||
tau_max = min(tau_max, w)
|
||||
x_cumsum = np.concatenate((np.array([0.0]), (x * x).cumsum()))
|
||||
size = w + tau_max
|
||||
p2 = (size // 32).bit_length()
|
||||
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
|
||||
size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
|
||||
fc = np.fft.rfft(x, size_pad)
|
||||
conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
|
||||
return x_cumsum[w : w - tau_max : -1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv
|
||||
|
||||
|
||||
def cumulativeMeanNormalizedDifferenceFunction(df, N):
|
||||
"""
|
||||
Compute cumulative mean normalized difference function (CMND).
|
||||
|
||||
This corresponds to equation (8) in [1]
|
||||
|
||||
:param df: Difference function
|
||||
:param N: length of data
|
||||
:return: cumulative mean normalized difference function
|
||||
:rtype: list
|
||||
"""
|
||||
|
||||
cmndf = df[1:] * range(1, N) / np.cumsum(df[1:]).astype(float) # scipy method
|
||||
return np.insert(cmndf, 0, 1)
|
||||
|
||||
|
||||
def getPitch(cmdf, tau_min, tau_max, harmo_th=0.1):
|
||||
"""
|
||||
Return fundamental period of a frame based on CMND function.
|
||||
|
||||
:param cmdf: Cumulative Mean Normalized Difference function
|
||||
:param tau_min: minimum period for speech
|
||||
:param tau_max: maximum period for speech
|
||||
:param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency
|
||||
:return: fundamental period if there is values under threshold, 0 otherwise
|
||||
:rtype: float
|
||||
"""
|
||||
tau = tau_min
|
||||
while tau < tau_max:
|
||||
if cmdf[tau] < harmo_th:
|
||||
while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
|
||||
tau += 1
|
||||
return tau
|
||||
tau += 1
|
||||
|
||||
return 0 # if unvoiced
|
||||
|
||||
|
||||
def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500, harmo_thresh=0.1):
|
||||
"""
|
||||
|
||||
Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
|
||||
|
||||
:param sig: Audio signal (list of float)
|
||||
:param sr: sampling rate (int)
|
||||
:param w_len: size of the analysis window (samples)
|
||||
:param w_step: size of the lag between two consecutives windows (samples)
|
||||
:param f0_min: Minimum fundamental frequency that can be detected (hertz)
|
||||
:param f0_max: Maximum fundamental frequency that can be detected (hertz)
|
||||
:param harmo_tresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this treshold.
|
||||
|
||||
:returns:
|
||||
|
||||
* pitches: list of fundamental frequencies,
|
||||
* harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value)
|
||||
* argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
|
||||
* times: list of time of each estimation
|
||||
:rtype: tuple
|
||||
"""
|
||||
|
||||
tau_min = int(sr / f0_max)
|
||||
tau_max = int(sr / f0_min)
|
||||
|
||||
timeScale = range(0, len(sig) - w_len, w_step) # time values for each analysis window
|
||||
times = [t / float(sr) for t in timeScale]
|
||||
frames = [sig[t : t + w_len] for t in timeScale]
|
||||
|
||||
pitches = [0.0] * len(timeScale)
|
||||
harmonic_rates = [0.0] * len(timeScale)
|
||||
argmins = [0.0] * len(timeScale)
|
||||
|
||||
for i, frame in enumerate(frames):
|
||||
# Compute YIN
|
||||
df = differenceFunction(frame, w_len, tau_max)
|
||||
cmdf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max)
|
||||
p = getPitch(cmdf, tau_min, tau_max, harmo_thresh)
|
||||
|
||||
# Get results
|
||||
if np.argmin(cmdf) > tau_min:
|
||||
argmins[i] = float(sr / np.argmin(cmdf))
|
||||
if p != 0: # A pitch was found
|
||||
pitches[i] = float(sr / p)
|
||||
harmonic_rates[i] = cmdf[p]
|
||||
else: # No pitch, but we compute a value of the harmonic rate
|
||||
harmonic_rates[i] = min(cmdf)
|
||||
|
||||
return pitches, harmonic_rates, argmins, times
|
Loading…
Reference in New Issue