Add yin based pitch computation

This commit is contained in:
Eren Gölge 2021-07-14 14:55:54 +02:00
parent c448571c3c
commit 5a6ffaee08
1 changed files with 118 additions and 0 deletions

118
TTS/utils/yin.py Normal file
View File

@ -0,0 +1,118 @@
# adapted from https://github.com/patriceguyot/Yin
import numpy as np
def differenceFunction(x, N, tau_max):
"""
Compute difference function of data x. This corresponds to equation (6) in [1]
This solution is implemented directly with Numpy fft.
:param x: audio data
:param N: length of data
:param tau_max: integration window size
:return: difference function
:rtype: list
"""
x = np.array(x, np.float64)
w = x.size
tau_max = min(tau_max, w)
x_cumsum = np.concatenate((np.array([0.0]), (x * x).cumsum()))
size = w + tau_max
p2 = (size // 32).bit_length()
nice_numbers = (16, 18, 20, 24, 25, 27, 30, 32)
size_pad = min(x * 2 ** p2 for x in nice_numbers if x * 2 ** p2 >= size)
fc = np.fft.rfft(x, size_pad)
conv = np.fft.irfft(fc * fc.conjugate())[:tau_max]
return x_cumsum[w : w - tau_max : -1] + x_cumsum[w] - x_cumsum[:tau_max] - 2 * conv
def cumulativeMeanNormalizedDifferenceFunction(df, N):
"""
Compute cumulative mean normalized difference function (CMND).
This corresponds to equation (8) in [1]
:param df: Difference function
:param N: length of data
:return: cumulative mean normalized difference function
:rtype: list
"""
cmndf = df[1:] * range(1, N) / np.cumsum(df[1:]).astype(float) # scipy method
return np.insert(cmndf, 0, 1)
def getPitch(cmdf, tau_min, tau_max, harmo_th=0.1):
"""
Return fundamental period of a frame based on CMND function.
:param cmdf: Cumulative Mean Normalized Difference function
:param tau_min: minimum period for speech
:param tau_max: maximum period for speech
:param harmo_th: harmonicity threshold to determine if it is necessary to compute pitch frequency
:return: fundamental period if there is values under threshold, 0 otherwise
:rtype: float
"""
tau = tau_min
while tau < tau_max:
if cmdf[tau] < harmo_th:
while tau + 1 < tau_max and cmdf[tau + 1] < cmdf[tau]:
tau += 1
return tau
tau += 1
return 0 # if unvoiced
def compute_yin(sig, sr, w_len=512, w_step=256, f0_min=100, f0_max=500, harmo_thresh=0.1):
"""
Compute the Yin Algorithm. Return fundamental frequency and harmonic rate.
:param sig: Audio signal (list of float)
:param sr: sampling rate (int)
:param w_len: size of the analysis window (samples)
:param w_step: size of the lag between two consecutives windows (samples)
:param f0_min: Minimum fundamental frequency that can be detected (hertz)
:param f0_max: Maximum fundamental frequency that can be detected (hertz)
:param harmo_tresh: Threshold of detection. The yalgorithmù return the first minimum of the CMND function below this treshold.
:returns:
* pitches: list of fundamental frequencies,
* harmonic_rates: list of harmonic rate values for each fundamental frequency value (= confidence value)
* argmins: minimums of the Cumulative Mean Normalized DifferenceFunction
* times: list of time of each estimation
:rtype: tuple
"""
tau_min = int(sr / f0_max)
tau_max = int(sr / f0_min)
timeScale = range(0, len(sig) - w_len, w_step) # time values for each analysis window
times = [t / float(sr) for t in timeScale]
frames = [sig[t : t + w_len] for t in timeScale]
pitches = [0.0] * len(timeScale)
harmonic_rates = [0.0] * len(timeScale)
argmins = [0.0] * len(timeScale)
for i, frame in enumerate(frames):
# Compute YIN
df = differenceFunction(frame, w_len, tau_max)
cmdf = cumulativeMeanNormalizedDifferenceFunction(df, tau_max)
p = getPitch(cmdf, tau_min, tau_max, harmo_thresh)
# Get results
if np.argmin(cmdf) > tau_min:
argmins[i] = float(sr / np.argmin(cmdf))
if p != 0: # A pitch was found
pitches[i] = float(sr / p)
harmonic_rates[i] = cmdf[p]
else: # No pitch, but we compute a value of the harmonic rate
harmonic_rates[i] = min(cmdf)
return pitches, harmonic_rates, argmins, times