mirror of https://github.com/coqui-ai/TTS.git
Move FreeVCConfig to TTS.vc.configs (like all other config classes)
This commit is contained in:
parent
6fef4f9067
commit
5ae369d629
|
@ -1,5 +1,278 @@
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
from typing import List
|
from typing import List, Optional
|
||||||
|
|
||||||
|
from coqpit import Coqpit
|
||||||
|
|
||||||
from TTS.vc.configs.shared_configs import BaseVCConfig
|
from TTS.vc.configs.shared_configs import BaseVCConfig
|
||||||
from TTS.vc.models.freevc import FreeVCArgs, FreeVCAudioConfig, FreeVCConfig
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FreeVCAudioConfig(Coqpit):
|
||||||
|
"""Audio configuration
|
||||||
|
|
||||||
|
Args:
|
||||||
|
max_wav_value (float):
|
||||||
|
The maximum value of the waveform.
|
||||||
|
|
||||||
|
input_sample_rate (int):
|
||||||
|
The sampling rate of the input waveform.
|
||||||
|
|
||||||
|
output_sample_rate (int):
|
||||||
|
The sampling rate of the output waveform.
|
||||||
|
|
||||||
|
filter_length (int):
|
||||||
|
The length of the filter.
|
||||||
|
|
||||||
|
hop_length (int):
|
||||||
|
The hop length.
|
||||||
|
|
||||||
|
win_length (int):
|
||||||
|
The window length.
|
||||||
|
|
||||||
|
n_mel_channels (int):
|
||||||
|
The number of mel channels.
|
||||||
|
|
||||||
|
mel_fmin (float):
|
||||||
|
The minimum frequency of the mel filterbank.
|
||||||
|
|
||||||
|
mel_fmax (Optional[float]):
|
||||||
|
The maximum frequency of the mel filterbank.
|
||||||
|
"""
|
||||||
|
|
||||||
|
max_wav_value: float = field(default=32768.0)
|
||||||
|
input_sample_rate: int = field(default=16000)
|
||||||
|
output_sample_rate: int = field(default=24000)
|
||||||
|
filter_length: int = field(default=1280)
|
||||||
|
hop_length: int = field(default=320)
|
||||||
|
win_length: int = field(default=1280)
|
||||||
|
n_mel_channels: int = field(default=80)
|
||||||
|
mel_fmin: float = field(default=0.0)
|
||||||
|
mel_fmax: Optional[float] = field(default=None)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FreeVCArgs(Coqpit):
|
||||||
|
"""FreeVC model arguments
|
||||||
|
|
||||||
|
Args:
|
||||||
|
spec_channels (int):
|
||||||
|
The number of channels in the spectrogram.
|
||||||
|
|
||||||
|
inter_channels (int):
|
||||||
|
The number of channels in the intermediate layers.
|
||||||
|
|
||||||
|
hidden_channels (int):
|
||||||
|
The number of channels in the hidden layers.
|
||||||
|
|
||||||
|
filter_channels (int):
|
||||||
|
The number of channels in the filter layers.
|
||||||
|
|
||||||
|
n_heads (int):
|
||||||
|
The number of attention heads.
|
||||||
|
|
||||||
|
n_layers (int):
|
||||||
|
The number of layers.
|
||||||
|
|
||||||
|
kernel_size (int):
|
||||||
|
The size of the kernel.
|
||||||
|
|
||||||
|
p_dropout (float):
|
||||||
|
The dropout probability.
|
||||||
|
|
||||||
|
resblock (str):
|
||||||
|
The type of residual block.
|
||||||
|
|
||||||
|
resblock_kernel_sizes (List[int]):
|
||||||
|
The kernel sizes for the residual blocks.
|
||||||
|
|
||||||
|
resblock_dilation_sizes (List[List[int]]):
|
||||||
|
The dilation sizes for the residual blocks.
|
||||||
|
|
||||||
|
upsample_rates (List[int]):
|
||||||
|
The upsample rates.
|
||||||
|
|
||||||
|
upsample_initial_channel (int):
|
||||||
|
The number of channels in the initial upsample layer.
|
||||||
|
|
||||||
|
upsample_kernel_sizes (List[int]):
|
||||||
|
The kernel sizes for the upsample layers.
|
||||||
|
|
||||||
|
n_layers_q (int):
|
||||||
|
The number of layers in the quantization network.
|
||||||
|
|
||||||
|
use_spectral_norm (bool):
|
||||||
|
Whether to use spectral normalization.
|
||||||
|
|
||||||
|
gin_channels (int):
|
||||||
|
The number of channels in the global conditioning vector.
|
||||||
|
|
||||||
|
ssl_dim (int):
|
||||||
|
The dimension of the self-supervised learning embedding.
|
||||||
|
|
||||||
|
use_spk (bool):
|
||||||
|
Whether to use external speaker encoder.
|
||||||
|
"""
|
||||||
|
|
||||||
|
spec_channels: int = field(default=641)
|
||||||
|
inter_channels: int = field(default=192)
|
||||||
|
hidden_channels: int = field(default=192)
|
||||||
|
filter_channels: int = field(default=768)
|
||||||
|
n_heads: int = field(default=2)
|
||||||
|
n_layers: int = field(default=6)
|
||||||
|
kernel_size: int = field(default=3)
|
||||||
|
p_dropout: float = field(default=0.1)
|
||||||
|
resblock: str = field(default="1")
|
||||||
|
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
|
||||||
|
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
||||||
|
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
|
||||||
|
upsample_initial_channel: int = field(default=512)
|
||||||
|
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
||||||
|
n_layers_q: int = field(default=3)
|
||||||
|
use_spectral_norm: bool = field(default=False)
|
||||||
|
gin_channels: int = field(default=256)
|
||||||
|
ssl_dim: int = field(default=1024)
|
||||||
|
use_spk: bool = field(default=False)
|
||||||
|
num_spks: int = field(default=0)
|
||||||
|
segment_size: int = field(default=8960)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FreeVCConfig(BaseVCConfig):
|
||||||
|
"""Defines parameters for FreeVC End2End TTS model.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model (str):
|
||||||
|
Model name. Do not change unless you know what you are doing.
|
||||||
|
|
||||||
|
model_args (FreeVCArgs):
|
||||||
|
Model architecture arguments. Defaults to `FreeVCArgs()`.
|
||||||
|
|
||||||
|
audio (FreeVCAudioConfig):
|
||||||
|
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
|
||||||
|
|
||||||
|
grad_clip (List):
|
||||||
|
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
|
||||||
|
|
||||||
|
lr_gen (float):
|
||||||
|
Initial learning rate for the generator. Defaults to 0.0002.
|
||||||
|
|
||||||
|
lr_disc (float):
|
||||||
|
Initial learning rate for the discriminator. Defaults to 0.0002.
|
||||||
|
|
||||||
|
lr_scheduler_gen (str):
|
||||||
|
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
||||||
|
`ExponentialLR`.
|
||||||
|
|
||||||
|
lr_scheduler_gen_params (dict):
|
||||||
|
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
||||||
|
|
||||||
|
lr_scheduler_disc (str):
|
||||||
|
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
||||||
|
`ExponentialLR`.
|
||||||
|
|
||||||
|
lr_scheduler_disc_params (dict):
|
||||||
|
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
||||||
|
|
||||||
|
scheduler_after_epoch (bool):
|
||||||
|
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
|
||||||
|
|
||||||
|
optimizer (str):
|
||||||
|
Name of the optimizer to use with both the generator and the discriminator networks. One of the
|
||||||
|
`torch.optim.*`. Defaults to `AdamW`.
|
||||||
|
|
||||||
|
kl_loss_alpha (float):
|
||||||
|
Loss weight for KL loss. Defaults to 1.0.
|
||||||
|
|
||||||
|
disc_loss_alpha (float):
|
||||||
|
Loss weight for the discriminator loss. Defaults to 1.0.
|
||||||
|
|
||||||
|
gen_loss_alpha (float):
|
||||||
|
Loss weight for the generator loss. Defaults to 1.0.
|
||||||
|
|
||||||
|
feat_loss_alpha (float):
|
||||||
|
Loss weight for the feature matching loss. Defaults to 1.0.
|
||||||
|
|
||||||
|
mel_loss_alpha (float):
|
||||||
|
Loss weight for the mel loss. Defaults to 45.0.
|
||||||
|
|
||||||
|
return_wav (bool):
|
||||||
|
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
||||||
|
|
||||||
|
compute_linear_spec (bool):
|
||||||
|
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
||||||
|
|
||||||
|
use_weighted_sampler (bool):
|
||||||
|
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
||||||
|
|
||||||
|
weighted_sampler_attrs (dict):
|
||||||
|
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
||||||
|
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
||||||
|
|
||||||
|
weighted_sampler_multipliers (dict):
|
||||||
|
Weight each unique value of a key returned by the formatter for weighted sampling.
|
||||||
|
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
||||||
|
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
||||||
|
|
||||||
|
r (int):
|
||||||
|
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
||||||
|
|
||||||
|
add_blank (bool):
|
||||||
|
If true, a blank token is added in between every character. Defaults to `True`.
|
||||||
|
|
||||||
|
test_sentences (List[List]):
|
||||||
|
List of sentences with speaker and language information to be used for testing.
|
||||||
|
|
||||||
|
language_ids_file (str):
|
||||||
|
Path to the language ids file.
|
||||||
|
|
||||||
|
use_language_embedding (bool):
|
||||||
|
If true, language embedding is used. Defaults to `False`.
|
||||||
|
|
||||||
|
Note:
|
||||||
|
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
|
||||||
|
>>> from TTS.vc.configs.freevc_config import FreeVCConfig
|
||||||
|
>>> config = FreeVCConfig()
|
||||||
|
"""
|
||||||
|
|
||||||
|
model: str = "freevc"
|
||||||
|
# model specific params
|
||||||
|
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
|
||||||
|
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)
|
||||||
|
|
||||||
|
# optimizer
|
||||||
|
# TODO with training support
|
||||||
|
|
||||||
|
# loss params
|
||||||
|
# TODO with training support
|
||||||
|
|
||||||
|
# data loader params
|
||||||
|
return_wav: bool = True
|
||||||
|
compute_linear_spec: bool = True
|
||||||
|
|
||||||
|
# sampler params
|
||||||
|
use_weighted_sampler: bool = False # TODO: move it to the base config
|
||||||
|
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
||||||
|
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
||||||
|
|
||||||
|
# overrides
|
||||||
|
r: int = 1 # DO NOT CHANGE
|
||||||
|
add_blank: bool = True
|
||||||
|
|
||||||
|
# multi-speaker settings
|
||||||
|
# use speaker embedding layer
|
||||||
|
num_speakers: int = 0
|
||||||
|
speakers_file: str = None
|
||||||
|
speaker_embedding_channels: int = 256
|
||||||
|
|
||||||
|
# use d-vectors
|
||||||
|
use_d_vector_file: bool = False
|
||||||
|
d_vector_file: List[str] = None
|
||||||
|
d_vector_dim: int = None
|
||||||
|
|
||||||
|
def __post_init__(self):
|
||||||
|
for key, val in self.model_args.items():
|
||||||
|
if hasattr(self, key):
|
||||||
|
self[key] = val
|
||||||
|
|
|
@ -1,4 +1,3 @@
|
||||||
from dataclasses import dataclass, field
|
|
||||||
from typing import Dict, List, Optional, Tuple, Union
|
from typing import Dict, List, Optional, Tuple, Union
|
||||||
|
|
||||||
import librosa
|
import librosa
|
||||||
|
@ -13,8 +12,8 @@ from torch.nn.utils import remove_weight_norm, spectral_norm, weight_norm
|
||||||
import TTS.vc.modules.freevc.commons as commons
|
import TTS.vc.modules.freevc.commons as commons
|
||||||
import TTS.vc.modules.freevc.modules as modules
|
import TTS.vc.modules.freevc.modules as modules
|
||||||
from TTS.tts.utils.speakers import SpeakerManager
|
from TTS.tts.utils.speakers import SpeakerManager
|
||||||
from TTS.utils.io import load_fsspec, save_checkpoint
|
from TTS.utils.io import load_fsspec
|
||||||
from TTS.vc.configs.shared_configs import BaseVCConfig
|
from TTS.vc.configs.freevc_config import FreeVCConfig
|
||||||
from TTS.vc.models.base_vc import BaseVC
|
from TTS.vc.models.base_vc import BaseVC
|
||||||
from TTS.vc.modules.freevc.commons import get_padding, init_weights
|
from TTS.vc.modules.freevc.commons import get_padding, init_weights
|
||||||
from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch
|
from TTS.vc.modules.freevc.mel_processing import mel_spectrogram_torch
|
||||||
|
@ -294,136 +293,6 @@ class SpeakerEncoder(torch.nn.Module):
|
||||||
return embed
|
return embed
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class FreeVCAudioConfig(Coqpit):
|
|
||||||
"""Audio configuration
|
|
||||||
|
|
||||||
Args:
|
|
||||||
max_wav_value (float):
|
|
||||||
The maximum value of the waveform.
|
|
||||||
|
|
||||||
input_sample_rate (int):
|
|
||||||
The sampling rate of the input waveform.
|
|
||||||
|
|
||||||
output_sample_rate (int):
|
|
||||||
The sampling rate of the output waveform.
|
|
||||||
|
|
||||||
filter_length (int):
|
|
||||||
The length of the filter.
|
|
||||||
|
|
||||||
hop_length (int):
|
|
||||||
The hop length.
|
|
||||||
|
|
||||||
win_length (int):
|
|
||||||
The window length.
|
|
||||||
|
|
||||||
n_mel_channels (int):
|
|
||||||
The number of mel channels.
|
|
||||||
|
|
||||||
mel_fmin (float):
|
|
||||||
The minimum frequency of the mel filterbank.
|
|
||||||
|
|
||||||
mel_fmax (Optional[float]):
|
|
||||||
The maximum frequency of the mel filterbank.
|
|
||||||
"""
|
|
||||||
|
|
||||||
max_wav_value: float = field(default=32768.0)
|
|
||||||
input_sample_rate: int = field(default=16000)
|
|
||||||
output_sample_rate: int = field(default=24000)
|
|
||||||
filter_length: int = field(default=1280)
|
|
||||||
hop_length: int = field(default=320)
|
|
||||||
win_length: int = field(default=1280)
|
|
||||||
n_mel_channels: int = field(default=80)
|
|
||||||
mel_fmin: float = field(default=0.0)
|
|
||||||
mel_fmax: Optional[float] = field(default=None)
|
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class FreeVCArgs(Coqpit):
|
|
||||||
"""FreeVC model arguments
|
|
||||||
|
|
||||||
Args:
|
|
||||||
spec_channels (int):
|
|
||||||
The number of channels in the spectrogram.
|
|
||||||
|
|
||||||
inter_channels (int):
|
|
||||||
The number of channels in the intermediate layers.
|
|
||||||
|
|
||||||
hidden_channels (int):
|
|
||||||
The number of channels in the hidden layers.
|
|
||||||
|
|
||||||
filter_channels (int):
|
|
||||||
The number of channels in the filter layers.
|
|
||||||
|
|
||||||
n_heads (int):
|
|
||||||
The number of attention heads.
|
|
||||||
|
|
||||||
n_layers (int):
|
|
||||||
The number of layers.
|
|
||||||
|
|
||||||
kernel_size (int):
|
|
||||||
The size of the kernel.
|
|
||||||
|
|
||||||
p_dropout (float):
|
|
||||||
The dropout probability.
|
|
||||||
|
|
||||||
resblock (str):
|
|
||||||
The type of residual block.
|
|
||||||
|
|
||||||
resblock_kernel_sizes (List[int]):
|
|
||||||
The kernel sizes for the residual blocks.
|
|
||||||
|
|
||||||
resblock_dilation_sizes (List[List[int]]):
|
|
||||||
The dilation sizes for the residual blocks.
|
|
||||||
|
|
||||||
upsample_rates (List[int]):
|
|
||||||
The upsample rates.
|
|
||||||
|
|
||||||
upsample_initial_channel (int):
|
|
||||||
The number of channels in the initial upsample layer.
|
|
||||||
|
|
||||||
upsample_kernel_sizes (List[int]):
|
|
||||||
The kernel sizes for the upsample layers.
|
|
||||||
|
|
||||||
n_layers_q (int):
|
|
||||||
The number of layers in the quantization network.
|
|
||||||
|
|
||||||
use_spectral_norm (bool):
|
|
||||||
Whether to use spectral normalization.
|
|
||||||
|
|
||||||
gin_channels (int):
|
|
||||||
The number of channels in the global conditioning vector.
|
|
||||||
|
|
||||||
ssl_dim (int):
|
|
||||||
The dimension of the self-supervised learning embedding.
|
|
||||||
|
|
||||||
use_spk (bool):
|
|
||||||
Whether to use external speaker encoder.
|
|
||||||
"""
|
|
||||||
|
|
||||||
spec_channels: int = field(default=641)
|
|
||||||
inter_channels: int = field(default=192)
|
|
||||||
hidden_channels: int = field(default=192)
|
|
||||||
filter_channels: int = field(default=768)
|
|
||||||
n_heads: int = field(default=2)
|
|
||||||
n_layers: int = field(default=6)
|
|
||||||
kernel_size: int = field(default=3)
|
|
||||||
p_dropout: float = field(default=0.1)
|
|
||||||
resblock: str = field(default="1")
|
|
||||||
resblock_kernel_sizes: List[int] = field(default_factory=lambda: [3, 7, 11])
|
|
||||||
resblock_dilation_sizes: List[List[int]] = field(default_factory=lambda: [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
|
|
||||||
upsample_rates: List[int] = field(default_factory=lambda: [10, 8, 2, 2])
|
|
||||||
upsample_initial_channel: int = field(default=512)
|
|
||||||
upsample_kernel_sizes: List[int] = field(default_factory=lambda: [16, 16, 4, 4])
|
|
||||||
n_layers_q: int = field(default=3)
|
|
||||||
use_spectral_norm: bool = field(default=False)
|
|
||||||
gin_channels: int = field(default=256)
|
|
||||||
ssl_dim: int = field(default=1024)
|
|
||||||
use_spk: bool = field(default=False)
|
|
||||||
num_spks: int = field(default=0)
|
|
||||||
segment_size: int = field(default=8960)
|
|
||||||
|
|
||||||
|
|
||||||
class FreeVC(BaseVC):
|
class FreeVC(BaseVC):
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
@ -677,7 +546,7 @@ class FreeVC(BaseVC):
|
||||||
...
|
...
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def init_from_config(config: "VitsConfig", samples: Union[List[List], List[Dict]] = None, verbose=True):
|
def init_from_config(config: FreeVCConfig, samples: Union[List[List], List[Dict]] = None, verbose=True):
|
||||||
model = FreeVC(config)
|
model = FreeVC(config)
|
||||||
return model
|
return model
|
||||||
|
|
||||||
|
@ -689,145 +558,3 @@ class FreeVC(BaseVC):
|
||||||
|
|
||||||
def train_step():
|
def train_step():
|
||||||
...
|
...
|
||||||
|
|
||||||
|
|
||||||
@dataclass
|
|
||||||
class FreeVCConfig(BaseVCConfig):
|
|
||||||
"""Defines parameters for FreeVC End2End TTS model.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model (str):
|
|
||||||
Model name. Do not change unless you know what you are doing.
|
|
||||||
|
|
||||||
model_args (FreeVCArgs):
|
|
||||||
Model architecture arguments. Defaults to `FreeVCArgs()`.
|
|
||||||
|
|
||||||
audio (FreeVCAudioConfig):
|
|
||||||
Audio processing configuration. Defaults to `FreeVCAudioConfig()`.
|
|
||||||
|
|
||||||
grad_clip (List):
|
|
||||||
Gradient clipping thresholds for each optimizer. Defaults to `[1000.0, 1000.0]`.
|
|
||||||
|
|
||||||
lr_gen (float):
|
|
||||||
Initial learning rate for the generator. Defaults to 0.0002.
|
|
||||||
|
|
||||||
lr_disc (float):
|
|
||||||
Initial learning rate for the discriminator. Defaults to 0.0002.
|
|
||||||
|
|
||||||
lr_scheduler_gen (str):
|
|
||||||
Name of the learning rate scheduler for the generator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
||||||
`ExponentialLR`.
|
|
||||||
|
|
||||||
lr_scheduler_gen_params (dict):
|
|
||||||
Parameters for the learning rate scheduler of the generator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
||||||
|
|
||||||
lr_scheduler_disc (str):
|
|
||||||
Name of the learning rate scheduler for the discriminator. One of the `torch.optim.lr_scheduler.*`. Defaults to
|
|
||||||
`ExponentialLR`.
|
|
||||||
|
|
||||||
lr_scheduler_disc_params (dict):
|
|
||||||
Parameters for the learning rate scheduler of the discriminator. Defaults to `{'gamma': 0.999875, "last_epoch":-1}`.
|
|
||||||
|
|
||||||
scheduler_after_epoch (bool):
|
|
||||||
If true, step the schedulers after each epoch else after each step. Defaults to `False`.
|
|
||||||
|
|
||||||
optimizer (str):
|
|
||||||
Name of the optimizer to use with both the generator and the discriminator networks. One of the
|
|
||||||
`torch.optim.*`. Defaults to `AdamW`.
|
|
||||||
|
|
||||||
kl_loss_alpha (float):
|
|
||||||
Loss weight for KL loss. Defaults to 1.0.
|
|
||||||
|
|
||||||
disc_loss_alpha (float):
|
|
||||||
Loss weight for the discriminator loss. Defaults to 1.0.
|
|
||||||
|
|
||||||
gen_loss_alpha (float):
|
|
||||||
Loss weight for the generator loss. Defaults to 1.0.
|
|
||||||
|
|
||||||
feat_loss_alpha (float):
|
|
||||||
Loss weight for the feature matching loss. Defaults to 1.0.
|
|
||||||
|
|
||||||
mel_loss_alpha (float):
|
|
||||||
Loss weight for the mel loss. Defaults to 45.0.
|
|
||||||
|
|
||||||
return_wav (bool):
|
|
||||||
If true, data loader returns the waveform as well as the other outputs. Do not change. Defaults to `True`.
|
|
||||||
|
|
||||||
compute_linear_spec (bool):
|
|
||||||
If true, the linear spectrogram is computed and returned alongside the mel output. Do not change. Defaults to `True`.
|
|
||||||
|
|
||||||
use_weighted_sampler (bool):
|
|
||||||
If true, use weighted sampler with bucketing for balancing samples between datasets used in training. Defaults to `False`.
|
|
||||||
|
|
||||||
weighted_sampler_attrs (dict):
|
|
||||||
Key retuned by the formatter to be used for weighted sampler. For example `{"root_path": 2.0, "speaker_name": 1.0}` sets sample probabilities
|
|
||||||
by overweighting `root_path` by 2.0. Defaults to `{}`.
|
|
||||||
|
|
||||||
weighted_sampler_multipliers (dict):
|
|
||||||
Weight each unique value of a key returned by the formatter for weighted sampling.
|
|
||||||
For example `{"root_path":{"/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-100/":1.0, "/raid/datasets/libritts-clean-16khz-bwe-coqui_44khz/LibriTTS/train-clean-360/": 0.5}`.
|
|
||||||
It will sample instances from `train-clean-100` 2 times more than `train-clean-360`. Defaults to `{}`.
|
|
||||||
|
|
||||||
r (int):
|
|
||||||
Number of spectrogram frames to be generated at a time. Do not change. Defaults to `1`.
|
|
||||||
|
|
||||||
add_blank (bool):
|
|
||||||
If true, a blank token is added in between every character. Defaults to `True`.
|
|
||||||
|
|
||||||
test_sentences (List[List]):
|
|
||||||
List of sentences with speaker and language information to be used for testing.
|
|
||||||
|
|
||||||
language_ids_file (str):
|
|
||||||
Path to the language ids file.
|
|
||||||
|
|
||||||
use_language_embedding (bool):
|
|
||||||
If true, language embedding is used. Defaults to `False`.
|
|
||||||
|
|
||||||
Note:
|
|
||||||
Check :class:`TTS.tts.configs.shared_configs.BaseTTSConfig` for the inherited parameters.
|
|
||||||
|
|
||||||
Example:
|
|
||||||
|
|
||||||
>>> from TTS.tts.configs.freevc_config import FreeVCConfig
|
|
||||||
>>> config = FreeVCConfig()
|
|
||||||
"""
|
|
||||||
|
|
||||||
model: str = "freevc"
|
|
||||||
# model specific params
|
|
||||||
model_args: FreeVCArgs = field(default_factory=FreeVCArgs)
|
|
||||||
audio: FreeVCAudioConfig = field(default_factory=FreeVCAudioConfig)
|
|
||||||
|
|
||||||
# optimizer
|
|
||||||
# TODO with training support
|
|
||||||
|
|
||||||
# loss params
|
|
||||||
# TODO with training support
|
|
||||||
|
|
||||||
# data loader params
|
|
||||||
return_wav: bool = True
|
|
||||||
compute_linear_spec: bool = True
|
|
||||||
|
|
||||||
# sampler params
|
|
||||||
use_weighted_sampler: bool = False # TODO: move it to the base config
|
|
||||||
weighted_sampler_attrs: dict = field(default_factory=lambda: {})
|
|
||||||
weighted_sampler_multipliers: dict = field(default_factory=lambda: {})
|
|
||||||
|
|
||||||
# overrides
|
|
||||||
r: int = 1 # DO NOT CHANGE
|
|
||||||
add_blank: bool = True
|
|
||||||
|
|
||||||
# multi-speaker settings
|
|
||||||
# use speaker embedding layer
|
|
||||||
num_speakers: int = 0
|
|
||||||
speakers_file: str = None
|
|
||||||
speaker_embedding_channels: int = 256
|
|
||||||
|
|
||||||
# use d-vectors
|
|
||||||
use_d_vector_file: bool = False
|
|
||||||
d_vector_file: List[str] = None
|
|
||||||
d_vector_dim: int = None
|
|
||||||
|
|
||||||
def __post_init__(self):
|
|
||||||
for key, val in self.model_args.items():
|
|
||||||
if hasattr(self, key):
|
|
||||||
self[key] = val
|
|
||||||
|
|
Loading…
Reference in New Issue