Fix demo freezing issue

This commit is contained in:
Edresson Casanova 2023-11-24 08:44:21 -03:00
parent 7cc348ed76
commit 626d9e16fb
2 changed files with 39 additions and 35 deletions

View File

@ -1 +1,2 @@
faster_whisper
faster_whisper==0.9.0
gradio==4.7.1

View File

@ -28,7 +28,7 @@ def load_model(xtts_checkpoint, xtts_config, xtts_vocab):
model.cuda()
return model
def run_tts(lang, tts_text, xtts_checkpoint, xtts_config, xtts_vocab, speaker_audio_file, state_vars):
def run_tts(lang, tts_text, xtts_checkpoint, xtts_config, xtts_vocab, speaker_audio_file):
# ToDo: add the load in other function to fast inference
model = load_model(xtts_checkpoint, xtts_config, xtts_vocab)
gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(audio_path=speaker_audio_file, gpt_cond_len=model.config.gpt_cond_len, max_ref_length=model.config.max_ref_len, sound_norm_refs=model.config.sound_norm_refs)
@ -95,7 +95,7 @@ def read_logs():
with gr.Blocks() as demo:
state_vars = gr.State()
# state_vars = gr.State()
with gr.Tab("Data processing"):
upload_file = gr.Audio(
sources="upload",
@ -135,7 +135,7 @@ with gr.Blocks() as demo:
prompt_compute_btn = gr.Button(value="Step 1 - Create dataset.")
def preprocess_dataset(audio_path, language, state_vars, progress=gr.Progress(track_tqdm=True)):
def preprocess_dataset(audio_path, language, progress=gr.Progress(track_tqdm=True)):
# create a temp directory to save the dataset
out_path = tempfile.TemporaryDirectory().name
if audio_path is None:
@ -144,27 +144,15 @@ with gr.Blocks() as demo:
else:
train_meta, eval_meta = format_audio_list([audio_path], target_language=language, out_path=out_path, gradio_progress=progress)
state_vars = {}
state_vars["train_csv"] = train_meta
state_vars["eval_csv"] = eval_meta
print(state_vars)
return "Dataset Processed!", state_vars
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
state_vars,
],
outputs=[
progress_data,
state_vars,
],
)
return "Dataset Processed!", train_meta, eval_meta
with gr.Tab("Fine-tuning XTTS"):
train_csv = gr.Textbox(
label="Train CSV:",
)
eval_csv = gr.Textbox(
label="Eval CSV:",
)
num_epochs = gr.Slider(
label="num_epochs",
minimum=1,
@ -189,21 +177,22 @@ with gr.Blocks() as demo:
demo.load(read_logs, None, logs_tts_train, every=1)
train_btn = gr.Button(value="Step 2 - Run the training")
def train_model(language, num_epochs, batch_size, state_vars, output_path="./", progress=gr.Progress(track_tqdm=True)):
# state_vars = {'train_csv': '/tmp/tmprh4k_vou/metadata_train.csv', 'eval_csv': '/tmp/tmprh4k_vou/metadata_eval.csv'}
def train_model(language, train_csv, eval_csv, num_epochs, batch_size, output_path="./", progress=gr.Progress(track_tqdm=True)):
# train_csv = '/tmp/tmprh4k_vou/metadata_train.csv'
# eval_csv = '/tmp/tmprh4k_vou/metadata_eval.csv'
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, state_vars["train_csv"], state_vars["eval_csv"], output_path=output_path)
config_path, original_xtts_checkpoint, vocab_file, exp_path, speaker_wav = train_gpt(language, num_epochs, batch_size, train_csv, eval_csv, output_path=output_path)
# copy original files to avoid parameters changes issues
os.system(f"cp {config_path} {exp_path}")
os.system(f"cp {vocab_file} {exp_path}")
ft_xtts_checkpoint = os.path.join(exp_path, "best_model.pth")
state_vars["config_path"] = config_path
state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
state_vars["vocab_file"] = vocab_file
state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
state_vars["speaker_audio_file"] = speaker_wav
return "Model training done!", state_vars, config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
# state_vars["config_path"] = config_path
# state_vars["original_xtts_checkpoint"] = original_xtts_checkpoint
# state_vars["vocab_file"] = vocab_file
# state_vars["ft_xtts_checkpoint"] = ft_xtts_checkpoint
# state_vars["speaker_audio_file"] = speaker_wav
return "Model training done!", config_path, vocab_file, ft_xtts_checkpoint, speaker_wav
with gr.Tab("Inference"):
@ -254,16 +243,31 @@ with gr.Blocks() as demo:
tts_output_audio = gr.Audio(label="Generated Audio.")
reference_audio = gr.Audio(label="Reference audio used.")
prompt_compute_btn.click(
fn=preprocess_dataset,
inputs=[
upload_file,
lang,
],
outputs=[
progress_data,
train_csv,
eval_csv,
],
)
train_btn.click(
fn=train_model,
inputs=[
lang,
train_csv,
eval_csv,
num_epochs,
batch_size,
state_vars,
],
outputs=[progress_train, state_vars, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
outputs=[progress_train, xtts_config, xtts_vocab, xtts_checkpoint, speaker_reference_audio],
)
@ -276,7 +280,6 @@ with gr.Blocks() as demo:
xtts_config,
xtts_vocab,
speaker_reference_audio,
state_vars,
],
outputs=[tts_output_audio, reference_audio],
)