mirror of https://github.com/coqui-ai/TTS.git
Fix linter issues ofr p3.6
This commit is contained in:
parent
738eee0cf9
commit
6782d3eab7
|
@ -64,6 +64,11 @@ disable=missing-docstring,
|
|||
too-many-public-methods,
|
||||
too-many-lines,
|
||||
bare-except,
|
||||
## for avoiding weird p3.6 CI linter error
|
||||
## TODO: see later if we can remove this
|
||||
assigning-non-slot,
|
||||
unsupported-assignment-operation,
|
||||
## end
|
||||
line-too-long,
|
||||
fixme,
|
||||
wrong-import-order,
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
from dataclasses import asdict, dataclass, field
|
||||
from typing import List
|
||||
from typing import Dict, List
|
||||
|
||||
from coqpit import MISSING
|
||||
|
||||
|
@ -14,7 +14,7 @@ class SpeakerEncoderConfig(BaseTrainingConfig):
|
|||
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
|
||||
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
|
||||
# model params
|
||||
model_params: dict = field(
|
||||
model_params: Dict = field(
|
||||
default_factory=lambda: {
|
||||
"model_name": "lstm",
|
||||
"input_dim": 80,
|
||||
|
@ -25,9 +25,9 @@ class SpeakerEncoderConfig(BaseTrainingConfig):
|
|||
}
|
||||
)
|
||||
|
||||
audio_augmentation: dict = field(default_factory=lambda: {})
|
||||
audio_augmentation: Dict = field(default_factory=lambda: {})
|
||||
|
||||
storage: dict = field(
|
||||
storage: Dict = field(
|
||||
default_factory=lambda: {
|
||||
"sample_from_storage_p": 0.66, # the probability with which we'll sample from the DataSet in-memory storage
|
||||
"storage_size": 15, # the size of the in-memory storage with respect to a single batch
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
from dataclasses import dataclass, field
|
||||
from typing import Dict
|
||||
|
||||
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig
|
||||
|
||||
|
@ -95,7 +96,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
|||
# model specific params
|
||||
discriminator_model: str = "univnet_discriminator"
|
||||
generator_model: str = "univnet_generator"
|
||||
generator_model_params: dict = field(
|
||||
generator_model_params: Dict = field(
|
||||
default_factory=lambda: {
|
||||
"in_channels": 64,
|
||||
"out_channels": 1,
|
||||
|
@ -120,7 +121,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
|||
|
||||
# loss weights - overrides
|
||||
stft_loss_weight: float = 2.5
|
||||
stft_loss_params: dict = field(
|
||||
stft_loss_params: Dict = field(
|
||||
default_factory=lambda: {
|
||||
"n_ffts": [1024, 2048, 512],
|
||||
"hop_lengths": [120, 240, 50],
|
||||
|
@ -132,7 +133,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
|||
hinge_G_loss_weight: float = 0
|
||||
feat_match_loss_weight: float = 0
|
||||
l1_spec_loss_weight: float = 0
|
||||
l1_spec_loss_params: dict = field(
|
||||
l1_spec_loss_params: Dict = field(
|
||||
default_factory=lambda: {
|
||||
"use_mel": True,
|
||||
"sample_rate": 22050,
|
||||
|
@ -152,7 +153,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
|||
# lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
||||
lr_scheduler_disc: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
|
||||
# lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
||||
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0})
|
||||
optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0})
|
||||
steps_to_start_discriminator: int = 200000
|
||||
|
||||
def __post_init__(self):
|
||||
|
|
Loading…
Reference in New Issue