mirror of https://github.com/coqui-ai/TTS.git
Fix linter issues ofr p3.6
This commit is contained in:
parent
738eee0cf9
commit
6782d3eab7
|
@ -64,6 +64,11 @@ disable=missing-docstring,
|
||||||
too-many-public-methods,
|
too-many-public-methods,
|
||||||
too-many-lines,
|
too-many-lines,
|
||||||
bare-except,
|
bare-except,
|
||||||
|
## for avoiding weird p3.6 CI linter error
|
||||||
|
## TODO: see later if we can remove this
|
||||||
|
assigning-non-slot,
|
||||||
|
unsupported-assignment-operation,
|
||||||
|
## end
|
||||||
line-too-long,
|
line-too-long,
|
||||||
fixme,
|
fixme,
|
||||||
wrong-import-order,
|
wrong-import-order,
|
||||||
|
|
|
@ -1,5 +1,5 @@
|
||||||
from dataclasses import asdict, dataclass, field
|
from dataclasses import asdict, dataclass, field
|
||||||
from typing import List
|
from typing import Dict, List
|
||||||
|
|
||||||
from coqpit import MISSING
|
from coqpit import MISSING
|
||||||
|
|
||||||
|
@ -14,7 +14,7 @@ class SpeakerEncoderConfig(BaseTrainingConfig):
|
||||||
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
|
audio: BaseAudioConfig = field(default_factory=BaseAudioConfig)
|
||||||
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
|
datasets: List[BaseDatasetConfig] = field(default_factory=lambda: [BaseDatasetConfig()])
|
||||||
# model params
|
# model params
|
||||||
model_params: dict = field(
|
model_params: Dict = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"model_name": "lstm",
|
"model_name": "lstm",
|
||||||
"input_dim": 80,
|
"input_dim": 80,
|
||||||
|
@ -25,9 +25,9 @@ class SpeakerEncoderConfig(BaseTrainingConfig):
|
||||||
}
|
}
|
||||||
)
|
)
|
||||||
|
|
||||||
audio_augmentation: dict = field(default_factory=lambda: {})
|
audio_augmentation: Dict = field(default_factory=lambda: {})
|
||||||
|
|
||||||
storage: dict = field(
|
storage: Dict = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"sample_from_storage_p": 0.66, # the probability with which we'll sample from the DataSet in-memory storage
|
"sample_from_storage_p": 0.66, # the probability with which we'll sample from the DataSet in-memory storage
|
||||||
"storage_size": 15, # the size of the in-memory storage with respect to a single batch
|
"storage_size": 15, # the size of the in-memory storage with respect to a single batch
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
from dataclasses import dataclass, field
|
from dataclasses import dataclass, field
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig
|
from TTS.vocoder.configs.shared_configs import BaseGANVocoderConfig
|
||||||
|
|
||||||
|
@ -95,7 +96,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
||||||
# model specific params
|
# model specific params
|
||||||
discriminator_model: str = "univnet_discriminator"
|
discriminator_model: str = "univnet_discriminator"
|
||||||
generator_model: str = "univnet_generator"
|
generator_model: str = "univnet_generator"
|
||||||
generator_model_params: dict = field(
|
generator_model_params: Dict = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"in_channels": 64,
|
"in_channels": 64,
|
||||||
"out_channels": 1,
|
"out_channels": 1,
|
||||||
|
@ -120,7 +121,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
||||||
|
|
||||||
# loss weights - overrides
|
# loss weights - overrides
|
||||||
stft_loss_weight: float = 2.5
|
stft_loss_weight: float = 2.5
|
||||||
stft_loss_params: dict = field(
|
stft_loss_params: Dict = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"n_ffts": [1024, 2048, 512],
|
"n_ffts": [1024, 2048, 512],
|
||||||
"hop_lengths": [120, 240, 50],
|
"hop_lengths": [120, 240, 50],
|
||||||
|
@ -132,7 +133,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
||||||
hinge_G_loss_weight: float = 0
|
hinge_G_loss_weight: float = 0
|
||||||
feat_match_loss_weight: float = 0
|
feat_match_loss_weight: float = 0
|
||||||
l1_spec_loss_weight: float = 0
|
l1_spec_loss_weight: float = 0
|
||||||
l1_spec_loss_params: dict = field(
|
l1_spec_loss_params: Dict = field(
|
||||||
default_factory=lambda: {
|
default_factory=lambda: {
|
||||||
"use_mel": True,
|
"use_mel": True,
|
||||||
"sample_rate": 22050,
|
"sample_rate": 22050,
|
||||||
|
@ -152,7 +153,7 @@ class UnivnetConfig(BaseGANVocoderConfig):
|
||||||
# lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
# lr_scheduler_gen_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
||||||
lr_scheduler_disc: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
|
lr_scheduler_disc: str = None # one of the schedulers from https:#pytorch.org/docs/stable/optim.html
|
||||||
# lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
# lr_scheduler_disc_params: dict = field(default_factory=lambda: {"gamma": 0.999, "last_epoch": -1})
|
||||||
optimizer_params: dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0})
|
optimizer_params: Dict = field(default_factory=lambda: {"betas": [0.5, 0.9], "weight_decay": 0.0})
|
||||||
steps_to_start_discriminator: int = 200000
|
steps_to_start_discriminator: int = 200000
|
||||||
|
|
||||||
def __post_init__(self):
|
def __post_init__(self):
|
||||||
|
|
Loading…
Reference in New Issue