mirror of https://github.com/coqui-ai/TTS.git
compute embeddings and create speakers.json
This commit is contained in:
parent
f8fd300b3e
commit
67e2b664e5
|
@ -9,9 +9,11 @@ import torch
|
|||
from TTS.speaker_encoder.model import SpeakerEncoder
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.io import load_config
|
||||
from TTS.utils.io import save_speaker_mapping
|
||||
from TTS.tts.datasets.preprocess import load_meta_data
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description='Compute embedding vectors for each wav file in a dataset. ')
|
||||
description='Compute embedding vectors for each wav file in a dataset. If "target_dataset" is defined, it generates "speakers.json" necessary for training a multi-speaker model.')
|
||||
parser.add_argument(
|
||||
'model_path',
|
||||
type=str,
|
||||
|
@ -29,6 +31,12 @@ parser.add_argument(
|
|||
'output_path',
|
||||
type=str,
|
||||
help='path for training outputs.')
|
||||
parser.add_argument(
|
||||
'--target_dataset',
|
||||
type=str,
|
||||
default='',
|
||||
help='Target dataset to pick a processor from TTS.tts.dataset.preprocess. Necessary to create a speakers.json file.'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--use_cuda', type=bool, help='flag to set cuda.', default=False
|
||||
)
|
||||
|
@ -45,44 +53,76 @@ data_path = args.data_path
|
|||
split_ext = os.path.splitext(data_path)
|
||||
sep = args.separator
|
||||
|
||||
if len(split_ext) > 0 and split_ext[1].lower() == '.csv':
|
||||
# Parse CSV
|
||||
print(f'CSV file: {data_path}')
|
||||
with open(data_path) as f:
|
||||
wav_path = os.path.join(os.path.dirname(data_path), 'wavs')
|
||||
wav_files = []
|
||||
print(f'Separator is: {sep}')
|
||||
for line in f:
|
||||
components = line.split(sep)
|
||||
if len(components) != 2:
|
||||
print("Invalid line")
|
||||
continue
|
||||
wav_file = os.path.join(wav_path, components[0] + '.wav')
|
||||
#print(f'wav_file: {wav_file}')
|
||||
if os.path.exists(wav_file):
|
||||
wav_files.append(wav_file)
|
||||
print(f'Count of wavs imported: {len(wav_files)}')
|
||||
if args.target_dataset != '':
|
||||
# if target dataset is defined
|
||||
dataset_config = [
|
||||
{
|
||||
"name": args.target_dataset,
|
||||
"path": args.data_path,
|
||||
"meta_file_train": None,
|
||||
"meta_file_val": None
|
||||
},
|
||||
]
|
||||
wav_files, _ = load_meta_data(dataset_config, eval_split=False)
|
||||
output_files = [wav_file[1].replace(data_path, args.output_path).replace(
|
||||
'.wav', '.npy') for wav_file in wav_files]
|
||||
else:
|
||||
# Parse all wav files in data_path
|
||||
wav_path = data_path
|
||||
wav_files = glob.glob(data_path + '/**/*.wav', recursive=True)
|
||||
# if target dataset is not defined
|
||||
if len(split_ext) > 0 and split_ext[1].lower() == '.csv':
|
||||
# Parse CSV
|
||||
print(f'CSV file: {data_path}')
|
||||
with open(data_path) as f:
|
||||
wav_path = os.path.join(os.path.dirname(data_path), 'wavs')
|
||||
wav_files = []
|
||||
print(f'Separator is: {sep}')
|
||||
for line in f:
|
||||
components = line.split(sep)
|
||||
if len(components) != 2:
|
||||
print("Invalid line")
|
||||
continue
|
||||
wav_file = os.path.join(wav_path, components[0] + '.wav')
|
||||
#print(f'wav_file: {wav_file}')
|
||||
if os.path.exists(wav_file):
|
||||
wav_files.append(wav_file)
|
||||
print(f'Count of wavs imported: {len(wav_files)}')
|
||||
else:
|
||||
# Parse all wav files in data_path
|
||||
wav_files = glob.glob(data_path + '/**/*.wav', recursive=True)
|
||||
|
||||
output_files = [wav_file.replace(wav_path, args.output_path).replace(
|
||||
'.wav', '.npy') for wav_file in wav_files]
|
||||
output_files = [wav_file.replace(data_path, args.output_path).replace(
|
||||
'.wav', '.npy') for wav_file in wav_files]
|
||||
|
||||
for output_file in output_files:
|
||||
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
||||
|
||||
# define Encoder model
|
||||
model = SpeakerEncoder(**c.model)
|
||||
model.load_state_dict(torch.load(args.model_path)['model'])
|
||||
model.eval()
|
||||
if args.use_cuda:
|
||||
model.cuda()
|
||||
|
||||
# compute speaker embeddings
|
||||
speaker_mapping = {}
|
||||
for idx, wav_file in enumerate(tqdm(wav_files)):
|
||||
if isinstance(wav_file, list):
|
||||
speaker_name = wav_file[2]
|
||||
wav_file = wav_file[1]
|
||||
mel_spec = ap.melspectrogram(ap.load_wav(wav_file, sr=ap.sample_rate)).T
|
||||
mel_spec = torch.FloatTensor(mel_spec[None, :, :])
|
||||
if args.use_cuda:
|
||||
mel_spec = mel_spec.cuda()
|
||||
embedd = model.compute_embedding(mel_spec)
|
||||
np.save(output_files[idx], embedd.detach().cpu().numpy())
|
||||
|
||||
if args.target_dataset != '':
|
||||
# create speaker_mapping if target dataset is defined
|
||||
wav_file_name = os.path.basename(wav_file)
|
||||
speaker_mapping[wav_file_name] = {}
|
||||
speaker_mapping[wav_file_name]['name'] = speaker_name
|
||||
speaker_mapping[wav_file_name]['embedding'] = embedd.detach().cpu().numpy()
|
||||
|
||||
if args.target_dataset != '':
|
||||
# save speaker_mapping if target dataset is defined
|
||||
mapping_file_path = os.path.join(args.output_path, 'speakers.json')
|
||||
save_speaker_mapping(mapping_file_path, speaker_mapping)
|
||||
|
|
Loading…
Reference in New Issue