correct loss normalization and function refactoring

This commit is contained in:
erogol 2020-06-03 12:16:08 +02:00
parent 34eacb6383
commit 6b1de26869
1 changed files with 77 additions and 64 deletions

View File

@ -6,6 +6,7 @@ from torch.nn import functional as F
class TorchSTFT():
def __init__(self, n_fft, hop_length, win_length, window='hann_window'):
""" Torch based STFT operation """
self.n_fft = n_fft
self.hop_length = hop_length
self.win_length = win_length
@ -33,6 +34,7 @@ class TorchSTFT():
class STFTLoss(nn.Module):
""" Single scale STFT Loss """
def __init__(self, n_fft, hop_length, win_length):
super(STFTLoss, self).__init__()
self.n_fft = n_fft
@ -50,6 +52,7 @@ class STFTLoss(nn.Module):
return loss_mag, loss_sc
class MultiScaleSTFTLoss(torch.nn.Module):
""" Multi scale STFT loss """
def __init__(self,
n_ffts=(1024, 2048, 512),
hop_lengths=(120, 240, 50),
@ -73,6 +76,7 @@ class MultiScaleSTFTLoss(torch.nn.Module):
class MultiScaleSubbandSTFTLoss(MultiScaleSTFTLoss):
""" Multiscale STFT loss for multi band model outputs """
def forward(self, y_hat, y):
y_hat = y_hat.view(-1, 1, y_hat.shape[2])
y = y.view(-1, 1, y.shape[2])
@ -121,16 +125,62 @@ class MelganFeatureLoss(nn.Module):
loss_feats = 0
for fake_feat, real_feat in zip(fake_feats, real_feats):
loss_feats += torch.mean(torch.abs(fake_feat - real_feat))
loss_feats /= len(fake_feats) + len(real_feats)
return loss_feats
##################################
#####################################
# LOSS WRAPPERS
#####################################
def _apply_G_adv_loss(scores_fake, loss_func):
""" Compute G adversarial loss function
and normalize values """
adv_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = loss_func(score_fake)
adv_loss += fake_loss
adv_loss /= len(scores_fake)
else:
fake_loss = loss_func(scores_fake)
adv_loss = fake_loss
return adv_loss
def _apply_D_loss(scores_fake, scores_real, loss_func):
""" Compute D loss func and normalize loss values """
loss = 0
real_loss = 0
fake_loss = 0
if isinstance(scores_fake, list):
# multi-scale loss
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = loss_func(score_fake, score_real)
loss += total_loss
real_loss += real_loss
fake_loss += fake_loss
# normalize loss values with number of scales
loss /= len(scores_fake)
real_loss /= len(scores_real)
fake_loss /= len(scores_fake)
else:
# single scale loss
total_loss, real_loss, fake_loss = loss_func(scores_fake, scores_real)
loss = total_loss
return loss, real_loss, fake_loss
##################################
# MODEL LOSSES
##################################
class GeneratorLoss(nn.Module):
def __init__(self, C):
""" Compute Generator Loss values depending on training
configuration """
super(GeneratorLoss, self).__init__()
assert not(C.use_mse_gan_loss and C.use_hinge_gan_loss),\
" [!] Cannot use HingeGANLoss and MSEGANLoss together."
@ -159,7 +209,8 @@ class GeneratorLoss(nn.Module):
self.feat_match_loss = MelganFeatureLoss()
def forward(self, y_hat=None, y=None, scores_fake=None, feats_fake=None, feats_real=None, y_hat_sub=None, y_sub=None):
loss = 0
gen_loss = 0
adv_loss = 0
return_dict = {}
# STFT Loss
@ -167,50 +218,41 @@ class GeneratorLoss(nn.Module):
stft_loss_mg, stft_loss_sc = self.stft_loss(y_hat.squeeze(1), y.squeeze(1))
return_dict['G_stft_loss_mg'] = stft_loss_mg
return_dict['G_stft_loss_sc'] = stft_loss_sc
loss += self.stft_loss_weight * (stft_loss_mg + stft_loss_sc)
gen_loss += self.stft_loss_weight * (stft_loss_mg + stft_loss_sc)
# subband STFT Loss
if self.use_subband_stft_loss:
subband_stft_loss_mg, subband_stft_loss_sc = self.subband_stft_loss(y_hat_sub, y_sub)
return_dict['G_subband_stft_loss_mg'] = subband_stft_loss_mg
return_dict['G_subband_stft_loss_sc'] = subband_stft_loss_sc
loss += self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc)
gen_loss += self.subband_stft_loss_weight * (subband_stft_loss_mg + subband_stft_loss_sc)
# Fake Losses
# multiscale MSE adversarial loss
if self.use_mse_gan_loss and scores_fake is not None:
mse_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = self.mse_loss(score_fake)
mse_fake_loss += fake_loss
else:
fake_loss = self.mse_loss(scores_fake)
mse_fake_loss = fake_loss
mse_fake_loss = _apply_G_adv_loss(scores_fake, self.mse_loss)
return_dict['G_mse_fake_loss'] = mse_fake_loss
loss += self.mse_gan_loss_weight * mse_fake_loss
adv_loss += self.mse_gan_loss_weight * mse_fake_loss
# multiscale Hinge adversarial loss
if self.use_hinge_gan_loss and not scores_fake is not None:
hinge_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake in scores_fake:
fake_loss = self.hinge_loss(score_fake)
hinge_fake_loss += fake_loss
else:
fake_loss = self.hinge_loss(scores_fake)
hinge_fake_loss = fake_loss
hinge_fake_loss = _apply_G_adv_loss(scores_fake, self.hinge_loss)
return_dict['G_hinge_fake_loss'] = hinge_fake_loss
loss += self.hinge_gan_loss_weight * hinge_fake_loss
adv_loss += self.hinge_gan_loss_weight * hinge_fake_loss
# Feature Matching Loss
if self.use_feat_match_loss and not feats_fake:
feat_match_loss = self.feat_match_loss(feats_fake, feats_real)
return_dict['G_feat_match_loss'] = feat_match_loss
loss += self.feat_match_loss_weight * feat_match_loss
return_dict['G_loss'] = loss
adv_loss += self.feat_match_loss_weight * feat_match_loss
return_dict['G_loss'] = gen_loss + adv_loss
return_dict['G_gen_loss'] = gen_loss
return_dict['G_adv_loss'] = adv_loss
return return_dict
class DiscriminatorLoss(nn.Module):
""" Compute Discriminator Loss values depending on training
configuration """
def __init__(self, C):
super(DiscriminatorLoss, self).__init__()
assert not(C.use_mse_gan_loss and C.use_hinge_gan_loss),\
@ -219,9 +261,6 @@ class DiscriminatorLoss(nn.Module):
self.use_mse_gan_loss = C.use_mse_gan_loss
self.use_hinge_gan_loss = C.use_hinge_gan_loss
self.mse_gan_loss_weight = C.mse_gan_loss_weight
self.hinge_gan_loss_weight = C.hinge_gan_loss_weight
if C.use_mse_gan_loss:
self.mse_loss = MSEDLoss()
if C.use_hinge_gan_loss:
@ -232,44 +271,18 @@ class DiscriminatorLoss(nn.Module):
return_dict = {}
if self.use_mse_gan_loss:
mse_gan_loss = 0
mse_gan_real_loss = 0
mse_gan_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = self.mse_loss(score_fake, score_real)
mse_gan_loss += total_loss
mse_gan_real_loss += real_loss
mse_gan_fake_loss += fake_loss
else:
total_loss, real_loss, fake_loss = self.mse_loss(scores_fake, scores_real)
mse_gan_loss = total_loss
mse_gan_real_loss = real_loss
mse_gan_fake_loss = fake_loss
return_dict['D_mse_gan_loss'] = mse_gan_loss
return_dict['D_mse_gan_real_loss'] = mse_gan_real_loss
return_dict['D_mse_gan_fake_loss'] = mse_gan_fake_loss
loss += self.mse_gan_loss_weight * mse_gan_loss
mse_D_loss, mse_D_real_loss, mse_D_fake_loss = _apply_D_loss(scores_fake, scores_real, self.mse_loss)
return_dict['D_mse_gan_loss'] = mse_D_loss
return_dict['D_mse_gan_real_loss'] = mse_D_real_loss
return_dict['D_mse_gan_fake_loss'] = mse_D_fake_loss
loss += mse_D_loss
if self.use_hinge_gan_loss:
hinge_gan_loss = 0
hinge_gan_real_loss = 0
hinge_gan_fake_loss = 0
if isinstance(scores_fake, list):
for score_fake, score_real in zip(scores_fake, scores_real):
total_loss, real_loss, fake_loss = self.hinge_loss(score_fake, score_real)
hinge_gan_loss += total_loss
hinge_gan_real_loss += real_loss
hinge_gan_fake_loss += fake_loss
else:
total_loss, real_loss, fake_loss = self.hinge_loss(scores_fake, scores_real)
hinge_gan_loss = total_loss
hinge_gan_real_loss = real_loss
hinge_gan_fake_loss = fake_loss
return_dict['D_hinge_gan_loss'] = hinge_gan_loss
return_dict['D_hinge_gan_real_loss'] = hinge_gan_real_loss
return_dict['D_hinge_gan_fake_loss'] = hinge_gan_fake_loss
loss += self.hinge_gan_loss_weight * hinge_gan_loss
hinge_D_loss, hinge_D_real_loss, hinge_D_fake_loss = _apply_D_loss(scores_fake, scores_real, self.hinge_loss)
return_dict['D_hinge_gan_loss'] = hinge_D_loss
return_dict['D_hinge_gan_real_loss'] = hinge_D_real_loss
return_dict['D_hinge_gan_fake_loss'] = hinge_D_fake_loss
loss += hinge_D_loss
return_dict['D_loss'] = loss
return return_dict