Issue #435 - Convert melgan vocoder models to TF2.0

This commit is contained in:
erogol 2020-06-19 12:25:27 +02:00
parent 58784ad09c
commit 6b2ff08239
9 changed files with 497 additions and 0 deletions

View File

@ -0,0 +1,115 @@
import argparse
import os
import sys
from pprint import pprint
import numpy as np
import tensorflow as tf
import torch
from fuzzywuzzy import fuzz
from TTS.utils.io import load_config
from TTS.vocoder.tf.models.multiband_melgan_generator import \
MultibandMelganGenerator
from TTS.vocoder.tf.utils.convert_torch_to_tf_utils import (
compare_torch_tf, convert_tf_name, transfer_weights_torch_to_tf)
from TTS.vocoder.tf.utils.generic_utils import \
setup_generator as setup_tf_generator
from TTS.vocoder.tf.utils.io import save_checkpoint
from TTS.vocoder.utils.generic_utils import setup_generator
# prevent GPU use
os.environ['CUDA_VISIBLE_DEVICES'] = ''
# define args
parser = argparse.ArgumentParser()
parser.add_argument('--torch_model_path',
type=str,
help='Path to target torch model to be converted to TF.')
parser.add_argument('--config_path',
type=str,
help='Path to config file of torch model.')
parser.add_argument(
'--output_path',
type=str,
help='path to output file including file name to save TF model.')
args = parser.parse_args()
# load model config
config_path = args.config_path
c = load_config(config_path)
num_speakers = 0
# init torch model
model = setup_generator(c)
checkpoint = torch.load(args.torch_model_path,
map_location=torch.device('cpu'))
state_dict = checkpoint['model']
model.load_state_dict(state_dict)
model.remove_weight_norm()
state_dict = model.state_dict()
# init tf model
model_tf = setup_tf_generator(c)
common_sufix = '/.ATTRIBUTES/VARIABLE_VALUE'
# get tf_model graph by passing an input
# B x D x T
dummy_input = tf.random.uniform((7, 80, 64))
mel_pred = model_tf(dummy_input, training=False)
# get tf variables
tf_vars = model_tf.weights
# match variable names with fuzzy logic
torch_var_names = list(state_dict.keys())
tf_var_names = [we.name for we in model_tf.weights]
for tf_name in tf_var_names:
# skip re-mapped layer names
if tf_name in [name[0] for name in var_map]:
continue
tf_name_edited = convert_tf_name(tf_name)
ratios = [
fuzz.ratio(torch_name, tf_name_edited)
for torch_name in torch_var_names
]
max_idx = np.argmax(ratios)
matching_name = torch_var_names[max_idx]
del torch_var_names[max_idx]
var_map.append((tf_name, matching_name))
# pass weights
tf_vars = transfer_weights_torch_to_tf(tf_vars, dict(var_map), state_dict)
# Compare TF and TORCH models
# check embedding outputs
model.eval()
dummy_input_torch = torch.ones((1, 80, 10))
dummy_input_tf = tf.convert_to_tensor(dummy_input_torch.numpy())
dummy_input_tf = tf.transpose(dummy_input_tf, perm=[0, 2, 1])
dummy_input_tf = tf.expand_dims(dummy_input_tf, 2)
out_torch = model.layers[0](dummy_input_torch)
out_tf = model_tf.model_layers[0](dummy_input_tf)
out_tf_ = tf.transpose(out_tf, perm=[0, 3, 2, 1])[:, :, 0, :]
assert compare_torch_tf(out_torch, out_tf_) < 1e-5
for i in range(1, len(model.layers)):
print(f"{i} -> {model.layers[i]} vs {model_tf.model_layers[i]}")
out_torch = model.layers[i](out_torch)
out_tf = model_tf.model_layers[i](out_tf)
out_tf_ = tf.transpose(out_tf, perm=[0, 3, 2, 1])[:, :, 0, :]
diff = compare_torch_tf(out_torch, out_tf_)
assert diff < 1e-5, diff
dummy_input_torch = torch.ones((1, 80, 10))
dummy_input_tf = tf.convert_to_tensor(dummy_input_torch.numpy())
output_torch = model.inference(dummy_input_torch)
output_tf = model_tf(dummy_input_tf, training=False)
assert compare_torch_tf(output_torch, output_tf) < 1e-5, compare_torch_tf(
output_torch, output_tf)
# save tf model
save_checkpoint(model_tf, checkpoint['step'], checkpoint['epoch'],
args.output_path)
print(' > Model conversion is successfully completed :).')

View File

@ -0,0 +1,52 @@
import tensorflow as tf
class ReflectionPad1d(tf.keras.layers.Layer):
def __init__(self, padding):
super(ReflectionPad1d, self).__init__()
self.padding = padding
def call(self, x):
print(x.shape)
return tf.pad(x, [[0, 0], [self.padding, self.padding], [0, 0], [0, 0]], "REFLECT")
class ResidualStack(tf.keras.layers.Layer):
def __init__(self, channels, num_res_blocks, kernel_size, name):
super(ResidualStack, self).__init__(name=name)
assert (kernel_size - 1) % 2 == 0, " [!] kernel_size has to be odd."
base_padding = (kernel_size - 1) // 2
self.blocks = []
num_layers = 2
for idx in range(num_res_blocks):
layer_kernel_size = kernel_size
layer_dilation = layer_kernel_size**idx
layer_padding = base_padding * layer_dilation
block = [
tf.keras.layers.LeakyReLU(0.2),
ReflectionPad1d(layer_padding),
tf.keras.layers.Conv2D(filters=channels,
kernel_size=(kernel_size, 1),
dilation_rate=(layer_dilation, 1),
use_bias=True,
padding='valid',
name=f'blocks.{idx}.{num_layers}'),
tf.keras.layers.LeakyReLU(0.2),
tf.keras.layers.Conv2D(filters=channels, kernel_size=(1, 1), use_bias=True, name=f'blocks.{idx}.{num_layers + 2}')
]
self.blocks.append(block)
self.shortcuts = [
tf.keras.layers.Conv2D(channels, kernel_size=1, use_bias=True, name=f'shortcuts.{i}')
for i in range(num_res_blocks)
]
def call(self, x):
# breakpoint()
for block, shortcut in zip(self.blocks, self.shortcuts):
res = shortcut(x)
for layer in block:
x = layer(x)
x += res
return x

66
vocoder/tf/layers/pqmf.py Normal file
View File

@ -0,0 +1,66 @@
import numpy as np
import tensorflow as tf
from scipy import signal as sig
class PQMF(tf.keras.layers.Layer):
def __init__(self, N=4, taps=62, cutoff=0.15, beta=9.0):
super(PQMF, self).__init__()
# define filter coefficient
self.N = N
self.taps = taps
self.cutoff = cutoff
self.beta = beta
QMF = sig.firwin(taps + 1, cutoff, window=('kaiser', beta))
H = np.zeros((N, len(QMF)))
G = np.zeros((N, len(QMF)))
for k in range(N):
constant_factor = (2 * k + 1) * (np.pi /
(2 * N)) * (np.arange(taps + 1) -
((taps - 1) / 2))
phase = (-1)**k * np.pi / 4
H[k] = 2 * QMF * np.cos(constant_factor + phase)
G[k] = 2 * QMF * np.cos(constant_factor - phase)
# [N, 1, taps + 1] == [filter_width, in_channels, out_channels]
self.H = np.transpose(H[:, None, :], (2, 1, 0)).astype('float32')
self.G = np.transpose(G[None, :, :], (2, 1, 0)).astype('float32')
# filter for downsampling & upsampling
updown_filter = np.zeros((N, N, N), dtype=np.float32)
for k in range(N):
updown_filter[0, k, k] = 1.0
self.updown_filter = updown_filter.astype(np.float32)
def analysis(self, x):
"""
x : B x 1 x T
"""
x = tf.transpose(x, perm=[0, 2, 1])
x = tf.pad(x, [[0, 0], [self.taps // 2, self.taps // 2], [0, 0]])
x = tf.nn.conv1d(x, self.H, stride=1, padding='VALID')
x = tf.nn.conv1d(x,
self.updown_filter,
stride=self.N,
padding='VALID')
x = tf.transpose(x, perm=[0, 2, 1])
return x
def synthesis(self, x):
"""
x : B x 1 x T
"""
x = tf.transpose(x, perm=[0, 2, 1])
x = tf.nn.conv1d_transpose(
x,
self.updown_filter * self.N,
strides=self.N,
output_shape=(tf.shape(x)[0], tf.shape(x)[1] * self.N,
self.N))
x = tf.pad(x, [[0, 0], [self.taps // 2, self.taps // 2], [0, 0]])
x = tf.nn.conv1d(x, self.G, stride=1, padding="VALID")
x = tf.transpose(x, perm=[0, 2, 1])
return x

View File

@ -0,0 +1,106 @@
import logging
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # FATAL
logging.getLogger('tensorflow').setLevel(logging.FATAL)
import tensorflow as tf
from TTS.vocoder.tf.layers.melgan import ResidualStack, ReflectionPad1d
class MelganGenerator(tf.keras.models.Model):
""" Melgan Generator TF implementation dedicated for inference with no
weight norm """
def __init__(self,
in_channels=80,
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=(8, 8, 2, 2),
res_kernel=3,
num_res_blocks=3):
super(MelganGenerator, self).__init__()
# assert model parameters
assert (proj_kernel -
1) % 2 == 0, " [!] proj_kernel should be an odd number."
# setup additional model parameters
base_padding = (proj_kernel - 1) // 2
act_slope = 0.2
self.inference_padding = 2
# initial layer
self.initial_layer = [
ReflectionPad1d(base_padding),
tf.keras.layers.Conv2D(filters=base_channels,
kernel_size=(proj_kernel, 1),
strides=1,
padding='valid',
use_bias=True,
name="1")
]
num_layers = 3 # count number of layers for layer naming
# upsampling layers and residual stacks
self.upsample_layers = []
for idx, upsample_factor in enumerate(upsample_factors):
layer_out_channels = base_channels // (2**(idx + 1))
layer_filter_size = upsample_factor * 2
layer_stride = upsample_factor
layer_output_padding = upsample_factor % 2
self.upsample_layers += [
tf.keras.layers.LeakyReLU(act_slope),
tf.keras.layers.Conv2DTranspose(
filters=layer_out_channels,
kernel_size=(layer_filter_size, 1),
strides=(layer_stride, 1),
padding='same',
# output_padding=layer_output_padding,
use_bias=True,
name=f'{num_layers}'),
ResidualStack(
channels=layer_out_channels,
num_res_blocks=num_res_blocks,
kernel_size=res_kernel,
name=f'layers.{num_layers + 1}'
)
]
num_layers += num_res_blocks - 1
self.upsample_layers += [tf.keras.layers.LeakyReLU(act_slope)]
# final layer
self.final_layers = [
ReflectionPad1d(base_padding),
tf.keras.layers.Conv2D(filters=out_channels,
kernel_size=(proj_kernel, 1),
use_bias=True,
name=f'layers.{num_layers + 1}'),
tf.keras.layers.Activation("tanh")
]
# self.initial_layer = tf.keras.models.Sequential(self.initial_layer)
# self.upsample_layers = tf.keras.models.Sequential(self.upsample_layers)
# self.final_layers = tf.keras.models.Sequential(self.final_layers)
# self.model_layers = tf.keras.models.Sequential(self.initial_layer + self.upsample_layers + self.final_layers, name="layers")
self.model_layers = self.initial_layer + self.upsample_layers + self.final_layers
def call(self, c, training=False):
"""
c : B x C x T
"""
if training:
raise NotImplementedError()
return self.inference(c)
def inference(self, c):
c = tf.transpose(c, perm=[0, 2, 1])
c = tf.expand_dims(c, 2)
c = tf.pad(c, [[0, 0], [self.inference_padding, self.inference_padding], [0, 0], [0, 0]], "REFLECT")
o = c
for layer in self.model_layers:
o = layer(o)
# o = self.model_layers(c)
o = tf.transpose(o, perm=[0, 3, 2, 1])
return o[:, :, 0, :]

View File

@ -0,0 +1,46 @@
import tensorflow as tf
from TTS.vocoder.tf.models.melgan_generator import MelganGenerator
from TTS.vocoder.tf.layers.pqmf import PQMF
class MultibandMelganGenerator(MelganGenerator):
def __init__(self,
in_channels=80,
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=(2, 8, 2, 2),
res_kernel=3,
num_res_blocks=3):
super(MultibandMelganGenerator,
self).__init__(in_channels=in_channels,
out_channels=out_channels,
proj_kernel=proj_kernel,
base_channels=base_channels,
upsample_factors=upsample_factors,
res_kernel=res_kernel,
num_res_blocks=num_res_blocks)
self.pqmf_layer = PQMF(N=4, taps=62, cutoff=0.15, beta=9.0)
def pqmf_analysis(self, x):
return self.pqmf_layer.analysis(x)
def pqmf_synthesis(self, x):
return self.pqmf_layer.synthesis(x)
# def call(self, c, training=False):
# if training:
# raise NotImplementedError()
# return self.inference(c)
def inference(self, c):
c = tf.transpose(c, perm=[0, 2, 1])
c = tf.expand_dims(c, 2)
c = tf.pad(c, [[0, 0], [self.inference_padding, self.inference_padding], [0, 0], [0, 0]], "REFLECT")
o = c
for layer in self.model_layers:
o = layer(o)
o = tf.transpose(o, perm=[0, 3, 2, 1])
o = self.pqmf_layer.synthesis(o[:, :, 0, :])
return o

View File

View File

@ -0,0 +1,48 @@
import numpy as np
import tensorflow as tf
def compare_torch_tf(torch_tensor, tf_tensor):
""" Compute the average absolute difference b/w torch and tf tensors """
return abs(torch_tensor.detach().numpy() - tf_tensor.numpy()).mean()
def convert_tf_name(tf_name):
""" Convert certain patterns in TF layer names to Torch patterns """
tf_name_tmp = tf_name
tf_name_tmp = tf_name_tmp.replace(':0', '')
tf_name_tmp = tf_name_tmp.replace('/forward_lstm/lstm_cell_1/recurrent_kernel', '/weight_hh_l0')
tf_name_tmp = tf_name_tmp.replace('/forward_lstm/lstm_cell_2/kernel', '/weight_ih_l1')
tf_name_tmp = tf_name_tmp.replace('/recurrent_kernel', '/weight_hh')
tf_name_tmp = tf_name_tmp.replace('/kernel', '/weight')
tf_name_tmp = tf_name_tmp.replace('/gamma', '/weight')
tf_name_tmp = tf_name_tmp.replace('/beta', '/bias')
tf_name_tmp = tf_name_tmp.replace('/', '.')
return tf_name_tmp
def transfer_weights_torch_to_tf(tf_vars, var_map_dict, state_dict):
""" Transfer weigths from torch state_dict to TF variables """
print(" > Passing weights from Torch to TF ...")
for tf_var in tf_vars:
torch_var_name = var_map_dict[tf_var.name]
print(f' | > {tf_var.name} <-- {torch_var_name}')
# if tuple, it is a bias variable
if 'kernel' in tf_var.name:
torch_weight = state_dict[torch_var_name]
try:
numpy_weight = torch_weight.permute([2, 1, 0]).numpy()[:, None, :, :]
except:
breakpoint()
if 'bias' in tf_var.name:
torch_weight = state_dict[torch_var_name]
numpy_weight = torch_weight
assert np.all(tf_var.shape == numpy_weight.shape), f" [!] weight shapes does not match: {tf_var.name} vs {torch_var_name} --> {tf_var.shape} vs {numpy_weight.shape}"
tf.keras.backend.set_value(tf_var, numpy_weight)
return tf_vars
def load_tf_vars(model_tf, tf_vars):
for tf_var in tf_vars:
model_tf.get_layer(tf_var.name).set_weights(tf_var)
return model_tf

View File

@ -0,0 +1,37 @@
import re
import importlib
import numpy as np
from matplotlib import pyplot as plt
def to_camel(text):
text = text.capitalize()
return re.sub(r'(?!^)_([a-zA-Z])', lambda m: m.group(1).upper(), text)
def setup_generator(c):
print(" > Generator Model: {}".format(c.generator_model))
MyModel = importlib.import_module('TTS.vocoder.tf.models.' +
c.generator_model.lower())
MyModel = getattr(MyModel, to_camel(c.generator_model))
if c.generator_model in 'melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=1,
proj_kernel=7,
base_channels=512,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
if c.generator_model in 'melgan_fb_generator':
pass
if c.generator_model in 'multiband_melgan_generator':
model = MyModel(
in_channels=c.audio['num_mels'],
out_channels=4,
proj_kernel=7,
base_channels=384,
upsample_factors=c.generator_model_params['upsample_factors'],
res_kernel=3,
num_res_blocks=c.generator_model_params['num_res_blocks'])
return model

27
vocoder/tf/utils/io.py Normal file
View File

@ -0,0 +1,27 @@
import datetime
import pickle
import tensorflow as tf
def save_checkpoint(model, current_step, epoch, output_path, **kwargs):
""" Save TF Vocoder model """
state = {
'model': model.weights,
'step': current_step,
'epoch': epoch,
'date': datetime.date.today().strftime("%B %d, %Y"),
}
state.update(kwargs)
pickle.dump(state, open(output_path, 'wb'))
def load_checkpoint(model, checkpoint_path):
""" Load TF Vocoder model """
checkpoint = pickle.load(open(checkpoint_path, 'rb'))
chkp_var_dict = {var.name: var.numpy() for var in checkpoint['model']}
tf_vars = model.weights
for tf_var in tf_vars:
layer_name = tf_var.name
chkp_var_value = chkp_var_dict[layer_name]
tf.keras.backend.set_value(tf_var, chkp_var_value)
return model