mirror of https://github.com/coqui-ai/TTS.git
Update ljspeech recipes
This commit is contained in:
parent
38a0b3b6c7
commit
6d9879bf66
|
@ -1,9 +1,11 @@
|
||||||
import os
|
import os
|
||||||
|
|
||||||
from TTS.trainer import Trainer, TrainingArgs
|
from TTS.trainer import Trainer, TrainingArgs
|
||||||
from TTS.tts.configs.align_tts_config import AlignTTSConfig, BaseDatasetConfig
|
from TTS.tts.configs.align_tts_config import AlignTTSConfig
|
||||||
|
from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.align_tts import AlignTTS
|
from TTS.tts.models.align_tts import AlignTTS
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
@ -31,23 +33,32 @@ config = AlignTTSConfig(
|
||||||
datasets=[dataset_config],
|
datasets=[dataset_config],
|
||||||
)
|
)
|
||||||
|
|
||||||
# init audio processor
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
ap = AudioProcessor(**config.audio.to_dict())
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init model
|
# init model
|
||||||
model = AlignTTS(config)
|
model = AlignTTS(config, ap, tokenizer)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# INITIALIZE THE TRAINER
|
||||||
|
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
|
||||||
|
# distributed training, etc.
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
TrainingArgs(),
|
TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
config,
|
|
||||||
output_path,
|
|
||||||
model=model,
|
|
||||||
train_samples=train_samples,
|
|
||||||
eval_samples=eval_samples,
|
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# AND... 3,2,1... 🚀
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
|
@ -5,6 +5,7 @@ from TTS.trainer import Trainer, TrainingArgs
|
||||||
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
|
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.forward_tts import ForwardTTS
|
from TTS.tts.models.forward_tts import ForwardTTS
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
from TTS.utils.manage import ModelManager
|
from TTS.utils.manage import ModelManager
|
||||||
|
|
||||||
|
@ -46,9 +47,9 @@ config = FastPitchConfig(
|
||||||
epochs=1000,
|
epochs=1000,
|
||||||
text_cleaner="english_cleaners",
|
text_cleaner="english_cleaners",
|
||||||
use_phonemes=True,
|
use_phonemes=True,
|
||||||
use_espeak_phonemes=False,
|
|
||||||
phoneme_language="en-us",
|
phoneme_language="en-us",
|
||||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||||
|
precompute_num_workers=4,
|
||||||
print_step=50,
|
print_step=50,
|
||||||
print_eval=False,
|
print_eval=False,
|
||||||
mixed_precision=False,
|
mixed_precision=False,
|
||||||
|
@ -67,23 +68,28 @@ if not config.model_args.use_aligner:
|
||||||
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
|
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
|
||||||
)
|
)
|
||||||
|
|
||||||
# init audio processor
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
ap = AudioProcessor(**config.audio)
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init the model
|
# init the model
|
||||||
model = ForwardTTS(config)
|
model = ForwardTTS(config, ap, tokenizer, speaker_manager=None)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# init the trainer and 🚀
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
TrainingArgs(),
|
TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
config,
|
|
||||||
output_path,
|
|
||||||
model=model,
|
|
||||||
train_samples=train_samples,
|
|
||||||
eval_samples=eval_samples,
|
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
|
@ -5,6 +5,7 @@ from TTS.trainer import Trainer, TrainingArgs
|
||||||
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
|
from TTS.tts.configs.fast_speech_config import FastSpeechConfig
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.forward_tts import ForwardTTS
|
from TTS.tts.models.forward_tts import ForwardTTS
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
from TTS.utils.manage import ModelManager
|
from TTS.utils.manage import ModelManager
|
||||||
|
|
||||||
|
@ -45,9 +46,9 @@ config = FastSpeechConfig(
|
||||||
epochs=1000,
|
epochs=1000,
|
||||||
text_cleaner="english_cleaners",
|
text_cleaner="english_cleaners",
|
||||||
use_phonemes=True,
|
use_phonemes=True,
|
||||||
use_espeak_phonemes=False,
|
|
||||||
phoneme_language="en-us",
|
phoneme_language="en-us",
|
||||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||||
|
precompute_num_workers=8,
|
||||||
print_step=50,
|
print_step=50,
|
||||||
print_eval=False,
|
print_eval=False,
|
||||||
mixed_precision=False,
|
mixed_precision=False,
|
||||||
|
@ -66,23 +67,28 @@ if not config.model_args.use_aligner:
|
||||||
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
|
f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
|
||||||
)
|
)
|
||||||
|
|
||||||
# init audio processor
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
ap = AudioProcessor(**config.audio)
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init the model
|
# init the model
|
||||||
model = ForwardTTS(config)
|
model = ForwardTTS(config, ap, tokenizer)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# init the trainer and 🚀
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
TrainingArgs(),
|
TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
config,
|
|
||||||
output_path,
|
|
||||||
model=model,
|
|
||||||
train_samples=train_samples,
|
|
||||||
eval_samples=eval_samples,
|
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
|
@ -52,7 +52,8 @@ ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# INITIALIZE THE TOKENIZER
|
# INITIALIZE THE TOKENIZER
|
||||||
# Tokenizer is used to convert text to sequences of token IDs.
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
tokenizer = TTSTokenizer.init_from_config(config)
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
# LOAD DATA SAMPLES
|
# LOAD DATA SAMPLES
|
||||||
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
|
|
@ -5,6 +5,7 @@ from TTS.trainer import Trainer, TrainingArgs
|
||||||
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
|
from TTS.tts.configs.speedy_speech_config import SpeedySpeechConfig
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.forward_tts import ForwardTTS
|
from TTS.tts.models.forward_tts import ForwardTTS
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
@ -38,9 +39,9 @@ config = SpeedySpeechConfig(
|
||||||
epochs=1000,
|
epochs=1000,
|
||||||
text_cleaner="english_cleaners",
|
text_cleaner="english_cleaners",
|
||||||
use_phonemes=True,
|
use_phonemes=True,
|
||||||
use_espeak_phonemes=False,
|
|
||||||
phoneme_language="en-us",
|
phoneme_language="en-us",
|
||||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||||
|
precompute_num_workers=4,
|
||||||
print_step=50,
|
print_step=50,
|
||||||
print_eval=False,
|
print_eval=False,
|
||||||
mixed_precision=False,
|
mixed_precision=False,
|
||||||
|
@ -50,14 +51,22 @@ config = SpeedySpeechConfig(
|
||||||
datasets=[dataset_config],
|
datasets=[dataset_config],
|
||||||
)
|
)
|
||||||
|
|
||||||
# # compute alignments
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
# if not config.model_args.use_aligner:
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
# manager = ModelManager()
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
# model_path, config_path, _ = manager.download_model("tts_models/en/ljspeech/tacotron2-DCA")
|
ap = AudioProcessor.init_from_config(config)
|
||||||
# # TODO: make compute_attention python callable
|
|
||||||
# os.system(
|
# INITIALIZE THE TOKENIZER
|
||||||
# f"python TTS/bin/compute_attention_masks.py --model_path {model_path} --config_path {config_path} --dataset ljspeech --dataset_metafile metadata.csv --data_path ./recipes/ljspeech/LJSpeech-1.1/ --use_cuda true"
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
# )
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init audio processor
|
# init audio processor
|
||||||
ap = AudioProcessor(**config.audio.to_dict())
|
ap = AudioProcessor(**config.audio.to_dict())
|
||||||
|
@ -66,16 +75,14 @@ ap = AudioProcessor(**config.audio.to_dict())
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init model
|
# init model
|
||||||
model = ForwardTTS(config)
|
model = ForwardTTS(config, ap, tokenizer)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# INITIALIZE THE TRAINER
|
||||||
|
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
|
||||||
|
# distributed training, etc.
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
TrainingArgs(),
|
TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
config,
|
|
||||||
output_path,
|
|
||||||
model=model,
|
|
||||||
train_samples=train_samples,
|
|
||||||
eval_samples=eval_samples,
|
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# AND... 3,2,1... 🚀
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
|
@ -6,6 +6,7 @@ from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||||
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.tacotron2 import Tacotron2
|
from TTS.tts.models.tacotron2 import Tacotron2
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
# from TTS.tts.datasets.tokenizer import Tokenizer
|
# from TTS.tts.datasets.tokenizer import Tokenizer
|
||||||
|
@ -60,23 +61,35 @@ config = Tacotron2Config( # This is the config that is saved for the future use
|
||||||
datasets=[dataset_config],
|
datasets=[dataset_config],
|
||||||
)
|
)
|
||||||
|
|
||||||
# init audio processor
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
ap = AudioProcessor(**config.audio.to_dict())
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init model
|
# INITIALIZE THE MODEL
|
||||||
model = Tacotron2(config)
|
# Models take a config object and a speaker manager as input
|
||||||
|
# Config defines the details of the model like the number of layers, the size of the embedding, etc.
|
||||||
|
# Speaker manager is used by multi-speaker models.
|
||||||
|
model = Tacotron2(config, ap, tokenizer)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# INITIALIZE THE TRAINER
|
||||||
|
# Trainer provides a generic API to train all the 🐸TTS models with all its perks like mixed-precision training,
|
||||||
|
# distributed training, etc.
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
TrainingArgs(),
|
TrainingArgs(), config, output_path, model=model, train_samples=train_samples, eval_samples=eval_samples
|
||||||
config,
|
|
||||||
output_path,
|
|
||||||
model=model,
|
|
||||||
train_samples=train_samples,
|
|
||||||
eval_samples=eval_samples,
|
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
|
|
||||||
|
# AND... 3,2,1... 🚀
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
|
@ -6,6 +6,7 @@ from TTS.tts.configs.shared_configs import BaseDatasetConfig
|
||||||
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
from TTS.tts.configs.tacotron2_config import Tacotron2Config
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.tacotron2 import Tacotron2
|
from TTS.tts.models.tacotron2 import Tacotron2
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
# from TTS.tts.datasets.tokenizer import Tokenizer
|
# from TTS.tts.datasets.tokenizer import Tokenizer
|
||||||
|
@ -46,6 +47,7 @@ config = Tacotron2Config( # This is the config that is saved for the future use
|
||||||
use_phonemes=True,
|
use_phonemes=True,
|
||||||
phoneme_language="en-us",
|
phoneme_language="en-us",
|
||||||
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
phoneme_cache_path=os.path.join(output_path, "phoneme_cache"),
|
||||||
|
precompute_num_workers=8,
|
||||||
print_step=25,
|
print_step=25,
|
||||||
print_eval=True,
|
print_eval=True,
|
||||||
mixed_precision=False,
|
mixed_precision=False,
|
||||||
|
@ -56,11 +58,28 @@ config = Tacotron2Config( # This is the config that is saved for the future use
|
||||||
# init audio processor
|
# init audio processor
|
||||||
ap = AudioProcessor(**config.audio.to_dict())
|
ap = AudioProcessor(**config.audio.to_dict())
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# If characters are not defined in the config, default characters are passed to the config
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init model
|
# INITIALIZE THE MODEL
|
||||||
model = Tacotron2(config)
|
# Models take a config object and a speaker manager as input
|
||||||
|
# Config defines the details of the model like the number of layers, the size of the embedding, etc.
|
||||||
|
# Speaker manager is used by multi-speaker models.
|
||||||
|
model = Tacotron2(config, ap, tokenizer, speaker_manager=None)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# init the trainer and 🚀
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
|
|
|
@ -33,7 +33,7 @@ audio_config = BaseAudioConfig(
|
||||||
config = VitsConfig(
|
config = VitsConfig(
|
||||||
audio=audio_config,
|
audio=audio_config,
|
||||||
run_name="vits_ljspeech",
|
run_name="vits_ljspeech",
|
||||||
batch_size=48,
|
batch_size=16,
|
||||||
eval_batch_size=16,
|
eval_batch_size=16,
|
||||||
batch_group_size=5,
|
batch_group_size=5,
|
||||||
num_loader_workers=0,
|
num_loader_workers=0,
|
||||||
|
@ -48,7 +48,7 @@ config = VitsConfig(
|
||||||
compute_input_seq_cache=True,
|
compute_input_seq_cache=True,
|
||||||
print_step=25,
|
print_step=25,
|
||||||
print_eval=True,
|
print_eval=True,
|
||||||
mixed_precision=True,
|
mixed_precision=False,
|
||||||
max_seq_len=500000,
|
max_seq_len=500000,
|
||||||
output_path=output_path,
|
output_path=output_path,
|
||||||
datasets=[dataset_config],
|
datasets=[dataset_config],
|
||||||
|
@ -61,7 +61,8 @@ ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# INITIALIZE THE TOKENIZER
|
# INITIALIZE THE TOKENIZER
|
||||||
# Tokenizer is used to convert text to sequences of token IDs.
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
tokenizer = TTSTokenizer.init_from_config(config)
|
# config is updated with the default characters if not defined in the config.
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
# LOAD DATA SAMPLES
|
# LOAD DATA SAMPLES
|
||||||
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
|
|
@ -7,6 +7,7 @@ from TTS.tts.configs.vits_config import VitsConfig
|
||||||
from TTS.tts.datasets import load_tts_samples
|
from TTS.tts.datasets import load_tts_samples
|
||||||
from TTS.tts.models.vits import Vits, VitsArgs
|
from TTS.tts.models.vits import Vits, VitsArgs
|
||||||
from TTS.tts.utils.speakers import SpeakerManager
|
from TTS.tts.utils.speakers import SpeakerManager
|
||||||
|
from TTS.tts.utils.text.tokenizer import TTSTokenizer
|
||||||
from TTS.utils.audio import AudioProcessor
|
from TTS.utils.audio import AudioProcessor
|
||||||
|
|
||||||
output_path = os.path.dirname(os.path.abspath(__file__))
|
output_path = os.path.dirname(os.path.abspath(__file__))
|
||||||
|
@ -63,10 +64,21 @@ config = VitsConfig(
|
||||||
datasets=[dataset_config],
|
datasets=[dataset_config],
|
||||||
)
|
)
|
||||||
|
|
||||||
# init audio processor
|
# INITIALIZE THE AUDIO PROCESSOR
|
||||||
ap = AudioProcessor(**config.audio.to_dict())
|
# Audio processor is used for feature extraction and audio I/O.
|
||||||
|
# It mainly serves to the dataloader and the training loggers.
|
||||||
|
ap = AudioProcessor.init_from_config(config)
|
||||||
|
|
||||||
# load training samples
|
# INITIALIZE THE TOKENIZER
|
||||||
|
# Tokenizer is used to convert text to sequences of token IDs.
|
||||||
|
# config is updated with the default characters if not defined in the config.
|
||||||
|
tokenizer, config = TTSTokenizer.init_from_config(config)
|
||||||
|
|
||||||
|
# LOAD DATA SAMPLES
|
||||||
|
# Each sample is a list of ```[text, audio_file_path, speaker_name]```
|
||||||
|
# You can define your custom sample loader returning the list of samples.
|
||||||
|
# Or define your custom formatter and pass it to the `load_tts_samples`.
|
||||||
|
# Check `TTS.tts.datasets.load_tts_samples` for more details.
|
||||||
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
train_samples, eval_samples = load_tts_samples(dataset_config, eval_split=True)
|
||||||
|
|
||||||
# init speaker manager for multi-speaker training
|
# init speaker manager for multi-speaker training
|
||||||
|
@ -76,7 +88,7 @@ speaker_manager.set_speaker_ids_from_data(train_samples + eval_samples)
|
||||||
config.model_args.num_speakers = speaker_manager.num_speakers
|
config.model_args.num_speakers = speaker_manager.num_speakers
|
||||||
|
|
||||||
# init model
|
# init model
|
||||||
model = Vits(config, speaker_manager)
|
model = Vits(config, ap, tokenizer, speaker_manager)
|
||||||
|
|
||||||
# init the trainer and 🚀
|
# init the trainer and 🚀
|
||||||
trainer = Trainer(
|
trainer = Trainer(
|
||||||
|
@ -86,6 +98,5 @@ trainer = Trainer(
|
||||||
model=model,
|
model=model,
|
||||||
train_samples=train_samples,
|
train_samples=train_samples,
|
||||||
eval_samples=eval_samples,
|
eval_samples=eval_samples,
|
||||||
training_assets={"audio_processor": ap},
|
|
||||||
)
|
)
|
||||||
trainer.fit()
|
trainer.fit()
|
||||||
|
|
Loading…
Reference in New Issue