From 6de98ff480f8f921dc8cb346477d4647702cc381 Mon Sep 17 00:00:00 2001 From: akulkarni Date: Thu, 13 Jun 2024 16:27:50 +0200 Subject: [PATCH] feat(openvoice): initial integration --- TTS/vc/modules/openvoice/__init__.py | 0 TTS/vc/modules/openvoice/attentions.py | 423 +++++++++++++++ TTS/vc/modules/openvoice/commons.py | 151 ++++++ TTS/vc/modules/openvoice/config.json | 57 ++ TTS/vc/modules/openvoice/models.py | 480 +++++++++++++++++ TTS/vc/modules/openvoice/modules.py | 588 +++++++++++++++++++++ TTS/vc/modules/openvoice/standalone_api.py | 342 ++++++++++++ TTS/vc/modules/openvoice/transforms.py | 203 +++++++ 8 files changed, 2244 insertions(+) create mode 100644 TTS/vc/modules/openvoice/__init__.py create mode 100644 TTS/vc/modules/openvoice/attentions.py create mode 100644 TTS/vc/modules/openvoice/commons.py create mode 100644 TTS/vc/modules/openvoice/config.json create mode 100644 TTS/vc/modules/openvoice/models.py create mode 100644 TTS/vc/modules/openvoice/modules.py create mode 100644 TTS/vc/modules/openvoice/standalone_api.py create mode 100644 TTS/vc/modules/openvoice/transforms.py diff --git a/TTS/vc/modules/openvoice/__init__.py b/TTS/vc/modules/openvoice/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/TTS/vc/modules/openvoice/attentions.py b/TTS/vc/modules/openvoice/attentions.py new file mode 100644 index 00000000..73c5554c --- /dev/null +++ b/TTS/vc/modules/openvoice/attentions.py @@ -0,0 +1,423 @@ +import math + +import torch +from torch import nn +from torch.nn import functional as F + +from TTS.vc.modules.openvoice import commons + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +class Encoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + window_size=4, + isflow=True, + **kwargs, + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.window_size = window_size + # if isflow: + # cond_layer = torch.nn.Conv1d(256, 2*hidden_channels*n_layers, 1) + # self.cond_pre = torch.nn.Conv1d(hidden_channels, 2*hidden_channels, 1) + # self.cond_layer = weight_norm(cond_layer, name='weight') + # self.gin_channels = 256 + self.cond_layer_idx = self.n_layers + if "gin_channels" in kwargs: + self.gin_channels = kwargs["gin_channels"] + if self.gin_channels != 0: + self.spk_emb_linear = nn.Linear(self.gin_channels, self.hidden_channels) + # vits2 says 3rd block, so idx is 2 by default + self.cond_layer_idx = kwargs["cond_layer_idx"] if "cond_layer_idx" in kwargs else 2 + # logging.debug(self.gin_channels, self.cond_layer_idx) + assert self.cond_layer_idx < self.n_layers, "cond_layer_idx should be less than n_layers" + self.drop = nn.Dropout(p_dropout) + self.attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + + for i in range(self.n_layers): + self.attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + window_size=window_size, + ) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, g=None): + attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + if i == self.cond_layer_idx and g is not None: + g = self.spk_emb_linear(g.transpose(1, 2)) + g = g.transpose(1, 2) + x = x + g + x = x * x_mask + y = self.attn_layers[i](x, x, attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class Decoder(nn.Module): + def __init__( + self, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size=1, + p_dropout=0.0, + proximal_bias=False, + proximal_init=True, + **kwargs, + ): + super().__init__() + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + + self.drop = nn.Dropout(p_dropout) + self.self_attn_layers = nn.ModuleList() + self.norm_layers_0 = nn.ModuleList() + self.encdec_attn_layers = nn.ModuleList() + self.norm_layers_1 = nn.ModuleList() + self.ffn_layers = nn.ModuleList() + self.norm_layers_2 = nn.ModuleList() + for i in range(self.n_layers): + self.self_attn_layers.append( + MultiHeadAttention( + hidden_channels, + hidden_channels, + n_heads, + p_dropout=p_dropout, + proximal_bias=proximal_bias, + proximal_init=proximal_init, + ) + ) + self.norm_layers_0.append(LayerNorm(hidden_channels)) + self.encdec_attn_layers.append( + MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout) + ) + self.norm_layers_1.append(LayerNorm(hidden_channels)) + self.ffn_layers.append( + FFN( + hidden_channels, + hidden_channels, + filter_channels, + kernel_size, + p_dropout=p_dropout, + causal=True, + ) + ) + self.norm_layers_2.append(LayerNorm(hidden_channels)) + + def forward(self, x, x_mask, h, h_mask): + """ + x: decoder input + h: encoder output + """ + self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype) + encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1) + x = x * x_mask + for i in range(self.n_layers): + y = self.self_attn_layers[i](x, x, self_attn_mask) + y = self.drop(y) + x = self.norm_layers_0[i](x + y) + + y = self.encdec_attn_layers[i](x, h, encdec_attn_mask) + y = self.drop(y) + x = self.norm_layers_1[i](x + y) + + y = self.ffn_layers[i](x, x_mask) + y = self.drop(y) + x = self.norm_layers_2[i](x + y) + x = x * x_mask + return x + + +class MultiHeadAttention(nn.Module): + def __init__( + self, + channels, + out_channels, + n_heads, + p_dropout=0.0, + window_size=None, + heads_share=True, + block_length=None, + proximal_bias=False, + proximal_init=False, + ): + super().__init__() + assert channels % n_heads == 0 + + self.channels = channels + self.out_channels = out_channels + self.n_heads = n_heads + self.p_dropout = p_dropout + self.window_size = window_size + self.heads_share = heads_share + self.block_length = block_length + self.proximal_bias = proximal_bias + self.proximal_init = proximal_init + self.attn = None + + self.k_channels = channels // n_heads + self.conv_q = nn.Conv1d(channels, channels, 1) + self.conv_k = nn.Conv1d(channels, channels, 1) + self.conv_v = nn.Conv1d(channels, channels, 1) + self.conv_o = nn.Conv1d(channels, out_channels, 1) + self.drop = nn.Dropout(p_dropout) + + if window_size is not None: + n_heads_rel = 1 if heads_share else n_heads + rel_stddev = self.k_channels**-0.5 + self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev) + + nn.init.xavier_uniform_(self.conv_q.weight) + nn.init.xavier_uniform_(self.conv_k.weight) + nn.init.xavier_uniform_(self.conv_v.weight) + if proximal_init: + with torch.no_grad(): + self.conv_k.weight.copy_(self.conv_q.weight) + self.conv_k.bias.copy_(self.conv_q.bias) + + def forward(self, x, c, attn_mask=None): + q = self.conv_q(x) + k = self.conv_k(c) + v = self.conv_v(c) + + x, self.attn = self.attention(q, k, v, mask=attn_mask) + + x = self.conv_o(x) + return x + + def attention(self, query, key, value, mask=None): + # reshape [b, d, t] -> [b, n_h, t, d_k] + b, d, t_s, t_t = (*key.size(), query.size(2)) + query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3) + key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3) + + scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1)) + if self.window_size is not None: + assert t_s == t_t, "Relative attention is only available for self-attention." + key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s) + rel_logits = self._matmul_with_relative_keys(query / math.sqrt(self.k_channels), key_relative_embeddings) + scores_local = self._relative_position_to_absolute_position(rel_logits) + scores = scores + scores_local + if self.proximal_bias: + assert t_s == t_t, "Proximal bias is only available for self-attention." + scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype) + if mask is not None: + scores = scores.masked_fill(mask == 0, -1e4) + if self.block_length is not None: + assert t_s == t_t, "Local attention is only available for self-attention." + block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length) + scores = scores.masked_fill(block_mask == 0, -1e4) + p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s] + p_attn = self.drop(p_attn) + output = torch.matmul(p_attn, value) + if self.window_size is not None: + relative_weights = self._absolute_position_to_relative_position(p_attn) + value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s) + output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings) + output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t] + return output, p_attn + + def _matmul_with_relative_values(self, x, y): + """ + x: [b, h, l, m] + y: [h or 1, m, d] + ret: [b, h, l, d] + """ + ret = torch.matmul(x, y.unsqueeze(0)) + return ret + + def _matmul_with_relative_keys(self, x, y): + """ + x: [b, h, l, d] + y: [h or 1, m, d] + ret: [b, h, l, m] + """ + ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1)) + return ret + + def _get_relative_embeddings(self, relative_embeddings, length): + 2 * self.window_size + 1 + # Pad first before slice to avoid using cond ops. + pad_length = max(length - (self.window_size + 1), 0) + slice_start_position = max((self.window_size + 1) - length, 0) + slice_end_position = slice_start_position + 2 * length - 1 + if pad_length > 0: + padded_relative_embeddings = F.pad( + relative_embeddings, + commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]), + ) + else: + padded_relative_embeddings = relative_embeddings + used_relative_embeddings = padded_relative_embeddings[:, slice_start_position:slice_end_position] + return used_relative_embeddings + + def _relative_position_to_absolute_position(self, x): + """ + x: [b, h, l, 2*l-1] + ret: [b, h, l, l] + """ + batch, heads, length, _ = x.size() + # Concat columns of pad to shift from relative to absolute indexing. + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, 1]])) + + # Concat extra elements so to add up to shape (len+1, 2*len-1). + x_flat = x.view([batch, heads, length * 2 * length]) + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [0, length - 1]])) + + # Reshape and slice out the padded elements. + x_final = x_flat.view([batch, heads, length + 1, 2 * length - 1])[:, :, :length, length - 1 :] + return x_final + + def _absolute_position_to_relative_position(self, x): + """ + x: [b, h, l, l] + ret: [b, h, l, 2*l-1] + """ + batch, heads, length, _ = x.size() + # pad along column + x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length - 1]])) + x_flat = x.view([batch, heads, length**2 + length * (length - 1)]) + # add 0's in the beginning that will skew the elements after reshape + x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]])) + x_final = x_flat.view([batch, heads, length, 2 * length])[:, :, :, 1:] + return x_final + + def _attention_bias_proximal(self, length): + """Bias for self-attention to encourage attention to close positions. + Args: + length: an integer scalar. + Returns: + a Tensor with shape [1, 1, length, length] + """ + r = torch.arange(length, dtype=torch.float32) + diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1) + return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0) + + +class FFN(nn.Module): + def __init__( + self, + in_channels, + out_channels, + filter_channels, + kernel_size, + p_dropout=0.0, + activation=None, + causal=False, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.activation = activation + self.causal = causal + + if causal: + self.padding = self._causal_padding + else: + self.padding = self._same_padding + + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size) + self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size) + self.drop = nn.Dropout(p_dropout) + + def forward(self, x, x_mask): + x = self.conv_1(self.padding(x * x_mask)) + if self.activation == "gelu": + x = x * torch.sigmoid(1.702 * x) + else: + x = torch.relu(x) + x = self.drop(x) + x = self.conv_2(self.padding(x * x_mask)) + return x * x_mask + + def _causal_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = self.kernel_size - 1 + pad_r = 0 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x + + def _same_padding(self, x): + if self.kernel_size == 1: + return x + pad_l = (self.kernel_size - 1) // 2 + pad_r = self.kernel_size // 2 + padding = [[0, 0], [0, 0], [pad_l, pad_r]] + x = F.pad(x, commons.convert_pad_shape(padding)) + return x diff --git a/TTS/vc/modules/openvoice/commons.py b/TTS/vc/modules/openvoice/commons.py new file mode 100644 index 00000000..123ee7e1 --- /dev/null +++ b/TTS/vc/modules/openvoice/commons.py @@ -0,0 +1,151 @@ +import math + +import torch +from torch.nn import functional as F + + +def init_weights(m, mean=0.0, std=0.01): + classname = m.__class__.__name__ + if classname.find("Conv") != -1: + m.weight.data.normal_(mean, std) + + +def get_padding(kernel_size, dilation=1): + return int((kernel_size * dilation - dilation) / 2) + + +def intersperse(lst, item): + result = [item] * (len(lst) * 2 + 1) + result[1::2] = lst + return result + + +def kl_divergence(m_p, logs_p, m_q, logs_q): + """KL(P||Q)""" + kl = (logs_q - logs_p) - 0.5 + kl += 0.5 * (torch.exp(2.0 * logs_p) + ((m_p - m_q) ** 2)) * torch.exp(-2.0 * logs_q) + return kl + + +def rand_gumbel(shape): + """Sample from the Gumbel distribution, protect from overflows.""" + uniform_samples = torch.rand(shape) * 0.99998 + 0.00001 + return -torch.log(-torch.log(uniform_samples)) + + +def rand_gumbel_like(x): + g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device) + return g + + +def slice_segments(x, ids_str, segment_size=4): + ret = torch.zeros_like(x[:, :, :segment_size]) + for i in range(x.size(0)): + idx_str = ids_str[i] + idx_end = idx_str + segment_size + ret[i] = x[i, :, idx_str:idx_end] + return ret + + +def rand_slice_segments(x, x_lengths=None, segment_size=4): + b, d, t = x.size() + if x_lengths is None: + x_lengths = t + ids_str_max = x_lengths - segment_size + 1 + ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long) + ret = slice_segments(x, ids_str, segment_size) + return ret, ids_str + + +def get_timing_signal_1d(length, channels, min_timescale=1.0, max_timescale=1.0e4): + position = torch.arange(length, dtype=torch.float) + num_timescales = channels // 2 + log_timescale_increment = math.log(float(max_timescale) / float(min_timescale)) / (num_timescales - 1) + inv_timescales = min_timescale * torch.exp( + torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment + ) + scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1) + signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0) + signal = F.pad(signal, [0, 0, 0, channels % 2]) + signal = signal.view(1, channels, length) + return signal + + +def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return x + signal.to(dtype=x.dtype, device=x.device) + + +def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1): + b, channels, length = x.size() + signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale) + return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis) + + +def subsequent_mask(length): + mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0) + return mask + + +@torch.jit.script +def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels): + n_channels_int = n_channels[0] + in_act = input_a + input_b + t_act = torch.tanh(in_act[:, :n_channels_int, :]) + s_act = torch.sigmoid(in_act[:, n_channels_int:, :]) + acts = t_act * s_act + return acts + + +def convert_pad_shape(pad_shape): + layer = pad_shape[::-1] + pad_shape = [item for sublist in layer for item in sublist] + return pad_shape + + +def shift_1d(x): + x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1] + return x + + +def sequence_mask(length, max_length=None): + if max_length is None: + max_length = length.max() + x = torch.arange(max_length, dtype=length.dtype, device=length.device) + return x.unsqueeze(0) < length.unsqueeze(1) + + +def generate_path(duration, mask): + """ + duration: [b, 1, t_x] + mask: [b, 1, t_y, t_x] + """ + + b, _, t_y, t_x = mask.shape + cum_duration = torch.cumsum(duration, -1) + + cum_duration_flat = cum_duration.view(b * t_x) + path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype) + path = path.view(b, t_x, t_y) + path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1] + path = path.unsqueeze(1).transpose(2, 3) * mask + return path + + +def clip_grad_value_(parameters, clip_value, norm_type=2): + if isinstance(parameters, torch.Tensor): + parameters = [parameters] + parameters = list(filter(lambda p: p.grad is not None, parameters)) + norm_type = float(norm_type) + if clip_value is not None: + clip_value = float(clip_value) + + total_norm = 0 + for p in parameters: + param_norm = p.grad.data.norm(norm_type) + total_norm += param_norm.item() ** norm_type + if clip_value is not None: + p.grad.data.clamp_(min=-clip_value, max=clip_value) + total_norm = total_norm ** (1.0 / norm_type) + return total_norm diff --git a/TTS/vc/modules/openvoice/config.json b/TTS/vc/modules/openvoice/config.json new file mode 100644 index 00000000..3e33566b --- /dev/null +++ b/TTS/vc/modules/openvoice/config.json @@ -0,0 +1,57 @@ +{ + "_version_": "v2", + "data": { + "sampling_rate": 22050, + "filter_length": 1024, + "hop_length": 256, + "win_length": 1024, + "n_speakers": 0 + }, + "model": { + "zero_g": true, + "inter_channels": 192, + "hidden_channels": 192, + "filter_channels": 768, + "n_heads": 2, + "n_layers": 6, + "kernel_size": 3, + "p_dropout": 0.1, + "resblock": "1", + "resblock_kernel_sizes": [ + 3, + 7, + 11 + ], + "resblock_dilation_sizes": [ + [ + 1, + 3, + 5 + ], + [ + 1, + 3, + 5 + ], + [ + 1, + 3, + 5 + ] + ], + "upsample_rates": [ + 8, + 8, + 2, + 2 + ], + "upsample_initial_channel": 512, + "upsample_kernel_sizes": [ + 16, + 16, + 4, + 4 + ], + "gin_channels": 256 + } +} \ No newline at end of file diff --git a/TTS/vc/modules/openvoice/models.py b/TTS/vc/modules/openvoice/models.py new file mode 100644 index 00000000..c1ae7574 --- /dev/null +++ b/TTS/vc/modules/openvoice/models.py @@ -0,0 +1,480 @@ +import math + +import torch +from torch import nn +from torch.nn import Conv1d, ConvTranspose1d +from torch.nn import functional as F +from torch.nn.utils import remove_weight_norm, weight_norm + +from TTS.vc.modules.openvoice import attentions, commons, modules +from TTS.vc.modules.openvoice.commons import init_weights + + +class TextEncoder(nn.Module): + def __init__( + self, n_vocab, out_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ): + super().__init__() + self.n_vocab = n_vocab + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.filter_channels = filter_channels + self.n_heads = n_heads + self.n_layers = n_layers + self.kernel_size = kernel_size + self.p_dropout = p_dropout + + self.emb = nn.Embedding(n_vocab, hidden_channels) + nn.init.normal_(self.emb.weight, 0.0, hidden_channels**-0.5) + + self.encoder = attentions.Encoder(hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths): + x = self.emb(x) * math.sqrt(self.hidden_channels) # [b, t, h] + x = torch.transpose(x, 1, -1) # [b, h, t] + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + + x = self.encoder(x * x_mask, x_mask) + stats = self.proj(x) * x_mask + + m, logs = torch.split(stats, self.out_channels, dim=1) + return x, m, logs, x_mask + + +class DurationPredictor(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, gin_channels=0): + super().__init__() + + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.gin_channels = gin_channels + + self.drop = nn.Dropout(p_dropout) + self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2) + self.norm_1 = modules.LayerNorm(filter_channels) + self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2) + self.norm_2 = modules.LayerNorm(filter_channels) + self.proj = nn.Conv1d(filter_channels, 1, 1) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, in_channels, 1) + + def forward(self, x, x_mask, g=None): + x = torch.detach(x) + if g is not None: + g = torch.detach(g) + x = x + self.cond(g) + x = self.conv_1(x * x_mask) + x = torch.relu(x) + x = self.norm_1(x) + x = self.drop(x) + x = self.conv_2(x * x_mask) + x = torch.relu(x) + x = self.norm_2(x) + x = self.drop(x) + x = self.proj(x * x_mask) + return x * x_mask + + +class StochasticDurationPredictor(nn.Module): + def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, n_flows=4, gin_channels=0): + super().__init__() + filter_channels = in_channels # it needs to be removed from future version. + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.p_dropout = p_dropout + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.log_flow = modules.Log() + self.flows = nn.ModuleList() + self.flows.append(modules.ElementwiseAffine(2)) + for i in range(n_flows): + self.flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) + self.flows.append(modules.Flip()) + + self.post_pre = nn.Conv1d(1, filter_channels, 1) + self.post_proj = nn.Conv1d(filter_channels, filter_channels, 1) + self.post_convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) + self.post_flows = nn.ModuleList() + self.post_flows.append(modules.ElementwiseAffine(2)) + for i in range(4): + self.post_flows.append(modules.ConvFlow(2, filter_channels, kernel_size, n_layers=3)) + self.post_flows.append(modules.Flip()) + + self.pre = nn.Conv1d(in_channels, filter_channels, 1) + self.proj = nn.Conv1d(filter_channels, filter_channels, 1) + self.convs = modules.DDSConv(filter_channels, kernel_size, n_layers=3, p_dropout=p_dropout) + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, filter_channels, 1) + + def forward(self, x, x_mask, w=None, g=None, reverse=False, noise_scale=1.0): + x = torch.detach(x) + x = self.pre(x) + if g is not None: + g = torch.detach(g) + x = x + self.cond(g) + x = self.convs(x, x_mask) + x = self.proj(x) * x_mask + + if not reverse: + flows = self.flows + assert w is not None + + logdet_tot_q = 0 + h_w = self.post_pre(w) + h_w = self.post_convs(h_w, x_mask) + h_w = self.post_proj(h_w) * x_mask + e_q = torch.randn(w.size(0), 2, w.size(2)).to(device=x.device, dtype=x.dtype) * x_mask + z_q = e_q + for flow in self.post_flows: + z_q, logdet_q = flow(z_q, x_mask, g=(x + h_w)) + logdet_tot_q += logdet_q + z_u, z1 = torch.split(z_q, [1, 1], 1) + u = torch.sigmoid(z_u) * x_mask + z0 = (w - u) * x_mask + logdet_tot_q += torch.sum((F.logsigmoid(z_u) + F.logsigmoid(-z_u)) * x_mask, [1, 2]) + logq = torch.sum(-0.5 * (math.log(2 * math.pi) + (e_q**2)) * x_mask, [1, 2]) - logdet_tot_q + + logdet_tot = 0 + z0, logdet = self.log_flow(z0, x_mask) + logdet_tot += logdet + z = torch.cat([z0, z1], 1) + for flow in flows: + z, logdet = flow(z, x_mask, g=x, reverse=reverse) + logdet_tot = logdet_tot + logdet + nll = torch.sum(0.5 * (math.log(2 * math.pi) + (z**2)) * x_mask, [1, 2]) - logdet_tot + return nll + logq # [b] + else: + flows = list(reversed(self.flows)) + flows = flows[:-2] + [flows[-1]] # remove a useless vflow + z = torch.randn(x.size(0), 2, x.size(2)).to(device=x.device, dtype=x.dtype) * noise_scale + for flow in flows: + z = flow(z, x_mask, g=x, reverse=reverse) + z0, z1 = torch.split(z, [1, 1], 1) + logw = z0 + return logw + + +class PosteriorEncoder(nn.Module): + def __init__( + self, + in_channels, + out_channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + ): + super().__init__() + self.in_channels = in_channels + self.out_channels = out_channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + + self.pre = nn.Conv1d(in_channels, hidden_channels, 1) + self.enc = modules.WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + ) + self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1) + + def forward(self, x, x_lengths, g=None, tau=1.0): + x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype) + x = self.pre(x) * x_mask + x = self.enc(x, x_mask, g=g) + stats = self.proj(x) * x_mask + m, logs = torch.split(stats, self.out_channels, dim=1) + z = (m + torch.randn_like(m) * tau * torch.exp(logs)) * x_mask + return z, m, logs, x_mask + + +class Generator(torch.nn.Module): + def __init__( + self, + initial_channel, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=0, + ): + super(Generator, self).__init__() + self.num_kernels = len(resblock_kernel_sizes) + self.num_upsamples = len(upsample_rates) + self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3) + resblock = modules.ResBlock1 if resblock == "1" else modules.ResBlock2 + + self.ups = nn.ModuleList() + for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)): + self.ups.append( + weight_norm( + ConvTranspose1d( + upsample_initial_channel // (2**i), + upsample_initial_channel // (2 ** (i + 1)), + k, + u, + padding=(k - u) // 2, + ) + ) + ) + + self.resblocks = nn.ModuleList() + for i in range(len(self.ups)): + ch = upsample_initial_channel // (2 ** (i + 1)) + for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)): + self.resblocks.append(resblock(ch, k, d)) + + self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False) + self.ups.apply(init_weights) + + if gin_channels != 0: + self.cond = nn.Conv1d(gin_channels, upsample_initial_channel, 1) + + def forward(self, x, g=None): + x = self.conv_pre(x) + if g is not None: + x = x + self.cond(g) + + for i in range(self.num_upsamples): + x = F.leaky_relu(x, modules.LRELU_SLOPE) + x = self.ups[i](x) + xs = None + for j in range(self.num_kernels): + if xs is None: + xs = self.resblocks[i * self.num_kernels + j](x) + else: + xs += self.resblocks[i * self.num_kernels + j](x) + x = xs / self.num_kernels + x = F.leaky_relu(x) + x = self.conv_post(x) + x = torch.tanh(x) + + return x + + def remove_weight_norm(self): + print("Removing weight norm...") + for layer in self.ups: + remove_weight_norm(layer) + for layer in self.resblocks: + layer.remove_weight_norm() + + +class ReferenceEncoder(nn.Module): + """ + inputs --- [N, Ty/r, n_mels*r] mels + outputs --- [N, ref_enc_gru_size] + """ + + def __init__(self, spec_channels, gin_channels=0, layernorm=True): + super().__init__() + self.spec_channels = spec_channels + ref_enc_filters = [32, 32, 64, 64, 128, 128] + K = len(ref_enc_filters) + filters = [1] + ref_enc_filters + convs = [ + weight_norm( + nn.Conv2d( + in_channels=filters[i], + out_channels=filters[i + 1], + kernel_size=(3, 3), + stride=(2, 2), + padding=(1, 1), + ) + ) + for i in range(K) + ] + self.convs = nn.ModuleList(convs) + + out_channels = self.calculate_channels(spec_channels, 3, 2, 1, K) + self.gru = nn.GRU( + input_size=ref_enc_filters[-1] * out_channels, + hidden_size=256 // 2, + batch_first=True, + ) + self.proj = nn.Linear(128, gin_channels) + if layernorm: + self.layernorm = nn.LayerNorm(self.spec_channels) + else: + self.layernorm = None + + def forward(self, inputs, mask=None): + N = inputs.size(0) + + out = inputs.view(N, 1, -1, self.spec_channels) # [N, 1, Ty, n_freqs] + if self.layernorm is not None: + out = self.layernorm(out) + + for conv in self.convs: + out = conv(out) + # out = wn(out) + out = F.relu(out) # [N, 128, Ty//2^K, n_mels//2^K] + + out = out.transpose(1, 2) # [N, Ty//2^K, 128, n_mels//2^K] + T = out.size(1) + N = out.size(0) + out = out.contiguous().view(N, T, -1) # [N, Ty//2^K, 128*n_mels//2^K] + + self.gru.flatten_parameters() + memory, out = self.gru(out) # out --- [1, N, 128] + + return self.proj(out.squeeze(0)) + + def calculate_channels(self, L, kernel_size, stride, pad, n_convs): + for i in range(n_convs): + L = (L - kernel_size + 2 * pad) // stride + 1 + return L + + +class ResidualCouplingBlock(nn.Module): + def __init__(self, channels, hidden_channels, kernel_size, dilation_rate, n_layers, n_flows=4, gin_channels=0): + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.n_flows = n_flows + self.gin_channels = gin_channels + + self.flows = nn.ModuleList() + for i in range(n_flows): + self.flows.append( + modules.ResidualCouplingLayer( + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=gin_channels, + mean_only=True, + ) + ) + self.flows.append(modules.Flip()) + + def forward(self, x, x_mask, g=None, reverse=False): + if not reverse: + for flow in self.flows: + x, _ = flow(x, x_mask, g=g, reverse=reverse) + else: + for flow in reversed(self.flows): + x = flow(x, x_mask, g=g, reverse=reverse) + return x + + +class SynthesizerTrn(nn.Module): + """ + Synthesizer for Training + """ + + def __init__( + self, + n_vocab, + spec_channels, + inter_channels, + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + n_speakers=256, + gin_channels=256, + zero_g=False, + **kwargs, + ): + super().__init__() + + self.dec = Generator( + inter_channels, + resblock, + resblock_kernel_sizes, + resblock_dilation_sizes, + upsample_rates, + upsample_initial_channel, + upsample_kernel_sizes, + gin_channels=gin_channels, + ) + self.enc_q = PosteriorEncoder( + spec_channels, + inter_channels, + hidden_channels, + 5, + 1, + 16, + gin_channels=gin_channels, + ) + + self.flow = ResidualCouplingBlock(inter_channels, hidden_channels, 5, 1, 4, gin_channels=gin_channels) + + self.n_speakers = n_speakers + if n_speakers == 0: + self.ref_enc = ReferenceEncoder(spec_channels, gin_channels) + else: + self.enc_p = TextEncoder( + n_vocab, inter_channels, hidden_channels, filter_channels, n_heads, n_layers, kernel_size, p_dropout + ) + self.sdp = StochasticDurationPredictor(hidden_channels, 192, 3, 0.5, 4, gin_channels=gin_channels) + self.dp = DurationPredictor(hidden_channels, 256, 3, 0.5, gin_channels=gin_channels) + self.emb_g = nn.Embedding(n_speakers, gin_channels) + self.zero_g = zero_g + + def infer( + self, x, x_lengths, sid=None, noise_scale=1, length_scale=1, noise_scale_w=1.0, sdp_ratio=0.2, max_len=None + ): + x, m_p, logs_p, x_mask = self.enc_p(x, x_lengths) + if self.n_speakers > 0: + g = self.emb_g(sid).unsqueeze(-1) # [b, h, 1] + else: + g = None + + logw = self.sdp(x, x_mask, g=g, reverse=True, noise_scale=noise_scale_w) * sdp_ratio + self.dp( + x, x_mask, g=g + ) * (1 - sdp_ratio) + + w = torch.exp(logw) * x_mask * length_scale + w_ceil = torch.ceil(w) + y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long() + y_mask = torch.unsqueeze(commons.sequence_mask(y_lengths, None), 1).to(x_mask.dtype) + attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1) + attn = commons.generate_path(w_ceil, attn_mask) + + m_p = torch.matmul(attn.squeeze(1), m_p.transpose(1, 2)).transpose(1, 2) # [b, t', t], [b, t, d] -> [b, d, t'] + logs_p = torch.matmul(attn.squeeze(1), logs_p.transpose(1, 2)).transpose( + 1, 2 + ) # [b, t', t], [b, t, d] -> [b, d, t'] + + z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noise_scale + z = self.flow(z_p, y_mask, g=g, reverse=True) + o = self.dec((z * y_mask)[:, :, :max_len], g=g) + return o, attn, y_mask, (z, z_p, m_p, logs_p) + + def voice_conversion(self, y, y_lengths, sid_src, sid_tgt, tau=1.0): + g_src = sid_src + g_tgt = sid_tgt + z, m_q, logs_q, y_mask = self.enc_q( + y, y_lengths, g=g_src if not self.zero_g else torch.zeros_like(g_src), tau=tau + ) + z_p = self.flow(z, y_mask, g=g_src) + z_hat = self.flow(z_p, y_mask, g=g_tgt, reverse=True) + o_hat = self.dec(z_hat * y_mask, g=g_tgt if not self.zero_g else torch.zeros_like(g_tgt)) + return o_hat, y_mask, (z, z_p, z_hat) diff --git a/TTS/vc/modules/openvoice/modules.py b/TTS/vc/modules/openvoice/modules.py new file mode 100644 index 00000000..b3a60d5b --- /dev/null +++ b/TTS/vc/modules/openvoice/modules.py @@ -0,0 +1,588 @@ +import math + +import torch +from torch import nn +from torch.nn import Conv1d +from torch.nn import functional as F +from torch.nn.utils import remove_weight_norm, weight_norm + +from TTS.vc.modules.openvoice import commons +from TTS.vc.modules.openvoice.attentions import Encoder +from TTS.vc.modules.openvoice.commons import get_padding, init_weights +from TTS.vc.modules.openvoice.transforms import piecewise_rational_quadratic_transform + +LRELU_SLOPE = 0.1 + + +class LayerNorm(nn.Module): + def __init__(self, channels, eps=1e-5): + super().__init__() + self.channels = channels + self.eps = eps + + self.gamma = nn.Parameter(torch.ones(channels)) + self.beta = nn.Parameter(torch.zeros(channels)) + + def forward(self, x): + x = x.transpose(1, -1) + x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) + return x.transpose(1, -1) + + +class ConvReluNorm(nn.Module): + def __init__( + self, + in_channels, + hidden_channels, + out_channels, + kernel_size, + n_layers, + p_dropout, + ): + super().__init__() + self.in_channels = in_channels + self.hidden_channels = hidden_channels + self.out_channels = out_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + assert n_layers > 1, "Number of layers should be larger than 0." + + self.conv_layers = nn.ModuleList() + self.norm_layers = nn.ModuleList() + self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2)) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) + for _ in range(n_layers - 1): + self.conv_layers.append( + nn.Conv1d( + hidden_channels, + hidden_channels, + kernel_size, + padding=kernel_size // 2, + ) + ) + self.norm_layers.append(LayerNorm(hidden_channels)) + self.proj = nn.Conv1d(hidden_channels, out_channels, 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask): + x_org = x + for i in range(self.n_layers): + x = self.conv_layers[i](x * x_mask) + x = self.norm_layers[i](x) + x = self.relu_drop(x) + x = x_org + self.proj(x) + return x * x_mask + + +class DDSConv(nn.Module): + """ + Dilated and Depth-Separable Convolution + """ + + def __init__(self, channels, kernel_size, n_layers, p_dropout=0.0): + super().__init__() + self.channels = channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.p_dropout = p_dropout + + self.drop = nn.Dropout(p_dropout) + self.convs_sep = nn.ModuleList() + self.convs_1x1 = nn.ModuleList() + self.norms_1 = nn.ModuleList() + self.norms_2 = nn.ModuleList() + for i in range(n_layers): + dilation = kernel_size**i + padding = (kernel_size * dilation - dilation) // 2 + self.convs_sep.append( + nn.Conv1d( + channels, + channels, + kernel_size, + groups=channels, + dilation=dilation, + padding=padding, + ) + ) + self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) + self.norms_1.append(LayerNorm(channels)) + self.norms_2.append(LayerNorm(channels)) + + def forward(self, x, x_mask, g=None): + if g is not None: + x = x + g + for i in range(self.n_layers): + y = self.convs_sep[i](x * x_mask) + y = self.norms_1[i](y) + y = F.gelu(y) + y = self.convs_1x1[i](y) + y = self.norms_2[i](y) + y = F.gelu(y) + y = self.drop(y) + x = x + y + return x * x_mask + + +class WN(torch.nn.Module): + def __init__( + self, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + gin_channels=0, + p_dropout=0, + ): + super(WN, self).__init__() + assert kernel_size % 2 == 1 + self.hidden_channels = hidden_channels + self.kernel_size = (kernel_size,) + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.gin_channels = gin_channels + self.p_dropout = p_dropout + + self.in_layers = torch.nn.ModuleList() + self.res_skip_layers = torch.nn.ModuleList() + self.drop = nn.Dropout(p_dropout) + + if gin_channels != 0: + cond_layer = torch.nn.Conv1d(gin_channels, 2 * hidden_channels * n_layers, 1) + self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") + + for i in range(n_layers): + dilation = dilation_rate**i + padding = int((kernel_size * dilation - dilation) / 2) + in_layer = torch.nn.Conv1d( + hidden_channels, + 2 * hidden_channels, + kernel_size, + dilation=dilation, + padding=padding, + ) + in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") + self.in_layers.append(in_layer) + + # last one is not necessary + if i < n_layers - 1: + res_skip_channels = 2 * hidden_channels + else: + res_skip_channels = hidden_channels + + res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) + res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") + self.res_skip_layers.append(res_skip_layer) + + def forward(self, x, x_mask, g=None, **kwargs): + output = torch.zeros_like(x) + n_channels_tensor = torch.IntTensor([self.hidden_channels]) + + if g is not None: + g = self.cond_layer(g) + + for i in range(self.n_layers): + x_in = self.in_layers[i](x) + if g is not None: + cond_offset = i * 2 * self.hidden_channels + g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] + else: + g_l = torch.zeros_like(x_in) + + acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) + acts = self.drop(acts) + + res_skip_acts = self.res_skip_layers[i](acts) + if i < self.n_layers - 1: + res_acts = res_skip_acts[:, : self.hidden_channels, :] + x = (x + res_acts) * x_mask + output = output + res_skip_acts[:, self.hidden_channels :, :] + else: + output = output + res_skip_acts + return output * x_mask + + def remove_weight_norm(self): + if self.gin_channels != 0: + torch.nn.utils.remove_weight_norm(self.cond_layer) + for l in self.in_layers: + torch.nn.utils.remove_weight_norm(l) + for l in self.res_skip_layers: + torch.nn.utils.remove_weight_norm(l) + + +class ResBlock1(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)): + super(ResBlock1, self).__init__() + self.convs1 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[2], + padding=get_padding(kernel_size, dilation[2]), + ) + ), + ] + ) + self.convs1.apply(init_weights) + + self.convs2 = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=1, + padding=get_padding(kernel_size, 1), + ) + ), + ] + ) + self.convs2.apply(init_weights) + + def forward(self, x, x_mask=None): + for c1, c2 in zip(self.convs1, self.convs2): + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c1(xt) + xt = F.leaky_relu(xt, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c2(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs1: + remove_weight_norm(l) + for l in self.convs2: + remove_weight_norm(l) + + +class ResBlock2(torch.nn.Module): + def __init__(self, channels, kernel_size=3, dilation=(1, 3)): + super(ResBlock2, self).__init__() + self.convs = nn.ModuleList( + [ + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[0], + padding=get_padding(kernel_size, dilation[0]), + ) + ), + weight_norm( + Conv1d( + channels, + channels, + kernel_size, + 1, + dilation=dilation[1], + padding=get_padding(kernel_size, dilation[1]), + ) + ), + ] + ) + self.convs.apply(init_weights) + + def forward(self, x, x_mask=None): + for c in self.convs: + xt = F.leaky_relu(x, LRELU_SLOPE) + if x_mask is not None: + xt = xt * x_mask + xt = c(xt) + x = xt + x + if x_mask is not None: + x = x * x_mask + return x + + def remove_weight_norm(self): + for l in self.convs: + remove_weight_norm(l) + + +class Log(nn.Module): + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask + logdet = torch.sum(-y, [1, 2]) + return y, logdet + else: + x = torch.exp(x) * x_mask + return x + + +class Flip(nn.Module): + def forward(self, x, *args, reverse=False, **kwargs): + x = torch.flip(x, [1]) + if not reverse: + logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) + return x, logdet + else: + return x + + +class ElementwiseAffine(nn.Module): + def __init__(self, channels): + super().__init__() + self.channels = channels + self.m = nn.Parameter(torch.zeros(channels, 1)) + self.logs = nn.Parameter(torch.zeros(channels, 1)) + + def forward(self, x, x_mask, reverse=False, **kwargs): + if not reverse: + y = self.m + torch.exp(self.logs) * x + y = y * x_mask + logdet = torch.sum(self.logs * x_mask, [1, 2]) + return y, logdet + else: + x = (x - self.m) * torch.exp(-self.logs) * x_mask + return x + + +class ResidualCouplingLayer(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=0, + gin_channels=0, + mean_only=False, + ): + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.dilation_rate = dilation_rate + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = WN( + hidden_channels, + kernel_size, + dilation_rate, + n_layers, + p_dropout=p_dropout, + gin_channels=gin_channels, + ) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + +class ConvFlow(nn.Module): + def __init__( + self, + in_channels, + filter_channels, + kernel_size, + n_layers, + num_bins=10, + tail_bound=5.0, + ): + super().__init__() + self.in_channels = in_channels + self.filter_channels = filter_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.num_bins = num_bins + self.tail_bound = tail_bound + self.half_channels = in_channels // 2 + + self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) + self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) + self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1) + self.proj.weight.data.zero_() + self.proj.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) + h = self.convs(h, x_mask, g=g) + h = self.proj(h) * x_mask + + b, c, t = x0.shape + h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] + + unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt(self.filter_channels) + unnormalized_derivatives = h[..., 2 * self.num_bins :] + + x1, logabsdet = piecewise_rational_quadratic_transform( + x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails="linear", + tail_bound=self.tail_bound, + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1, 2]) + if not reverse: + return x, logdet + else: + return x + + +class TransformerCouplingLayer(nn.Module): + def __init__( + self, + channels, + hidden_channels, + kernel_size, + n_layers, + n_heads, + p_dropout=0, + filter_channels=0, + mean_only=False, + wn_sharing_parameter=None, + gin_channels=0, + ): + assert n_layers == 3, n_layers + assert channels % 2 == 0, "channels should be divisible by 2" + super().__init__() + self.channels = channels + self.hidden_channels = hidden_channels + self.kernel_size = kernel_size + self.n_layers = n_layers + self.half_channels = channels // 2 + self.mean_only = mean_only + + self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) + self.enc = ( + Encoder( + hidden_channels, + filter_channels, + n_heads, + n_layers, + kernel_size, + p_dropout, + isflow=True, + gin_channels=gin_channels, + ) + if wn_sharing_parameter is None + else wn_sharing_parameter + ) + self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) + self.post.weight.data.zero_() + self.post.bias.data.zero_() + + def forward(self, x, x_mask, g=None, reverse=False): + x0, x1 = torch.split(x, [self.half_channels] * 2, 1) + h = self.pre(x0) * x_mask + h = self.enc(h, x_mask, g=g) + stats = self.post(h) * x_mask + if not self.mean_only: + m, logs = torch.split(stats, [self.half_channels] * 2, 1) + else: + m = stats + logs = torch.zeros_like(m) + + if not reverse: + x1 = m + x1 * torch.exp(logs) * x_mask + x = torch.cat([x0, x1], 1) + logdet = torch.sum(logs, [1, 2]) + return x, logdet + else: + x1 = (x1 - m) * torch.exp(-logs) * x_mask + x = torch.cat([x0, x1], 1) + return x + + x1, logabsdet = piecewise_rational_quadratic_transform( + x1, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=reverse, + tails="linear", + tail_bound=self.tail_bound, + ) + + x = torch.cat([x0, x1], 1) * x_mask + logdet = torch.sum(logabsdet * x_mask, [1, 2]) + if not reverse: + return x, logdet + else: + return x diff --git a/TTS/vc/modules/openvoice/standalone_api.py b/TTS/vc/modules/openvoice/standalone_api.py new file mode 100644 index 00000000..831fd4dc --- /dev/null +++ b/TTS/vc/modules/openvoice/standalone_api.py @@ -0,0 +1,342 @@ +import json +import os + +import librosa +import torch +import torch.utils.data +from librosa.filters import mel as librosa_mel_fn + +from TTS.vc.modules.openvoice.models import SynthesizerTrn + +# vc_checkpoint=model_path, vc_config=config_path, use_cuda=gpu) + +# vc_config.audio.output_sample_rate + + +class custom_sr_config: + """Class defined to make combatible sampling rate defination with TTS api.py. + + Args: + sampling rate. + """ + + def __init__(self, value): + self.audio = self.Audio(value) + + class Audio: + def __init__(self, value): + self.output_sample_rate = value + + +class OpenVoiceSynthesizer(object): + def __init__(self, vc_checkpoint, vc_config, use_cuda="cpu"): + + if use_cuda: + self.device = "cuda" + else: + self.device = "cpu" + + hps = get_hparams_from_file(vc_config) + self.vc_config = custom_sr_config(hps.data.sampling_rate) + + # vc_config.audio.output_sample_rate + self.model = SynthesizerTrn( + len(getattr(hps, "symbols", [])), + hps.data.filter_length // 2 + 1, + n_speakers=hps.data.n_speakers, + **hps.model, + ).to(torch.device(self.device)) + + self.hps = hps + self.load_ckpt(vc_checkpoint) + self.model.eval() + + def load_ckpt(self, ckpt_path): + checkpoint_dict = torch.load(ckpt_path, map_location=torch.device(self.device)) + a, b = self.model.load_state_dict(checkpoint_dict["model"], strict=False) + # print("Loaded checkpoint '{}'".format(ckpt_path)) + # print('missing/unexpected keys:', a, b) + + def extract_se(self, fpath): + audio_ref, sr = librosa.load(fpath, sr=self.hps.data.sampling_rate) + y = torch.FloatTensor(audio_ref) + y = y.to(self.device) + y = y.unsqueeze(0) + y = spectrogram_torch( + y, + self.hps.data.filter_length, + self.hps.data.sampling_rate, + self.hps.data.hop_length, + self.hps.data.win_length, + center=False, + ).to(self.device) + with torch.no_grad(): + g = self.model.ref_enc(y.transpose(1, 2)).unsqueeze(-1) + + return g + + # source_wav="my/source.wav", target_wav="my/target.wav", file_path="output.wav" + def voice_conversion(self, source_wav, target_wav, tau=0.3, message="default"): + + if not os.path.exists(source_wav): + print("source wavpath dont exists") + exit(0) + + if not os.path.exists(target_wav): + print("target wavpath dont exists") + exit(0) + + src_se = self.extract_se(source_wav) + tgt_se = self.extract_se(target_wav) + + # load audio + audio, sample_rate = librosa.load(source_wav, sr=self.hps.data.sampling_rate) + audio = torch.tensor(audio).float() + + with torch.no_grad(): + y = torch.FloatTensor(audio).to(self.device) + y = y.unsqueeze(0) + spec = spectrogram_torch( + y, + self.hps.data.filter_length, + self.hps.data.sampling_rate, + self.hps.data.hop_length, + self.hps.data.win_length, + center=False, + ).to(self.device) + spec_lengths = torch.LongTensor([spec.size(-1)]).to(self.device) + audio = ( + self.model.voice_conversion(spec, spec_lengths, sid_src=src_se, sid_tgt=tgt_se, tau=tau)[0][0, 0] + .data.cpu() + .float() + .numpy() + ) + + return audio + + +def get_hparams_from_file(config_path): + with open(config_path, "r", encoding="utf-8") as f: + data = f.read() + config = json.loads(data) + + hparams = HParams(**config) + return hparams + + +class HParams: + def __init__(self, **kwargs): + for k, v in kwargs.items(): + if isinstance(v, dict): + v = HParams(**v) + self[k] = v + + def keys(self): + return self.__dict__.keys() + + def items(self): + return self.__dict__.items() + + def values(self): + return self.__dict__.values() + + def __len__(self): + return len(self.__dict__) + + def __getitem__(self, key): + return getattr(self, key) + + def __setitem__(self, key, value): + return setattr(self, key, value) + + def __contains__(self, key): + return key in self.__dict__ + + def __repr__(self): + return self.__dict__.__repr__() + + +MAX_WAV_VALUE = 32768.0 + + +def dynamic_range_compression_torch(x, C=1, clip_val=1e-5): + """ + PARAMS + ------ + C: compression factor + """ + return torch.log(torch.clamp(x, min=clip_val) * C) + + +def dynamic_range_decompression_torch(x, C=1): + """ + PARAMS + ------ + C: compression factor used to compress + """ + return torch.exp(x) / C + + +def spectral_normalize_torch(magnitudes): + output = dynamic_range_compression_torch(magnitudes) + return output + + +def spectral_de_normalize_torch(magnitudes): + output = dynamic_range_decompression_torch(magnitudes) + return output + + +mel_basis = {} +hann_window = {} + + +def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False): + if torch.min(y) < -1.1: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.1: + print("max value is ", torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + wnsize_dtype_device = str(win_size) + "_" + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_size, + win_length=win_size, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + return spec + + +def spectrogram_torch_conv(y, n_fft, sampling_rate, hop_size, win_size, center=False): + # if torch.min(y) < -1.: + # print('min value is ', torch.min(y)) + # if torch.max(y) > 1.: + # print('max value is ', torch.max(y)) + + global hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + wnsize_dtype_device = str(win_size) + "_" + dtype_device + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect" + ) + + # ******************** original ************************# + # y = y.squeeze(1) + # spec1 = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], + # center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False) + + # ******************** ConvSTFT ************************# + freq_cutoff = n_fft // 2 + 1 + fourier_basis = torch.view_as_real(torch.fft.fft(torch.eye(n_fft))) + forward_basis = fourier_basis[:freq_cutoff].permute(2, 0, 1).reshape(-1, 1, fourier_basis.shape[1]) + forward_basis = ( + forward_basis * torch.as_tensor(librosa.util.pad_center(torch.hann_window(win_size), size=n_fft)).float() + ) + + import torch.nn.functional as F + + # if center: + # signal = F.pad(y[:, None, None, :], (n_fft // 2, n_fft // 2, 0, 0), mode = 'reflect').squeeze(1) + assert center is False + + forward_transform_squared = F.conv1d(y, forward_basis.to(y.device), stride=hop_size) + spec2 = torch.stack( + [forward_transform_squared[:, :freq_cutoff, :], forward_transform_squared[:, freq_cutoff:, :]], dim=-1 + ) + + # ******************** Verification ************************# + spec1 = torch.stft( + y.squeeze(1), + n_fft, + hop_length=hop_size, + win_length=win_size, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + assert torch.allclose(spec1, spec2, atol=1e-4) + + spec = torch.sqrt(spec2.pow(2).sum(-1) + 1e-6) + return spec + + +def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax): + global mel_basis + dtype_device = str(spec.dtype) + "_" + str(spec.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device) + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + return spec + + +def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False): + if torch.min(y) < -1.0: + print("min value is ", torch.min(y)) + if torch.max(y) > 1.0: + print("max value is ", torch.max(y)) + + global mel_basis, hann_window + dtype_device = str(y.dtype) + "_" + str(y.device) + fmax_dtype_device = str(fmax) + "_" + dtype_device + wnsize_dtype_device = str(win_size) + "_" + dtype_device + if fmax_dtype_device not in mel_basis: + mel = librosa_mel_fn(sampling_rate, n_fft, num_mels, fmin, fmax) + mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device) + if wnsize_dtype_device not in hann_window: + hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device) + + y = torch.nn.functional.pad( + y.unsqueeze(1), + (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), + mode="reflect", + ) + y = y.squeeze(1) + + spec = torch.stft( + y, + n_fft, + hop_length=hop_size, + win_length=win_size, + window=hann_window[wnsize_dtype_device], + center=center, + pad_mode="reflect", + normalized=False, + onesided=True, + return_complex=False, + ) + + spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6) + + spec = torch.matmul(mel_basis[fmax_dtype_device], spec) + spec = spectral_normalize_torch(spec) + + return spec diff --git a/TTS/vc/modules/openvoice/transforms.py b/TTS/vc/modules/openvoice/transforms.py new file mode 100644 index 00000000..4270ebae --- /dev/null +++ b/TTS/vc/modules/openvoice/transforms.py @@ -0,0 +1,203 @@ +import numpy as np +import torch +from torch.nn import functional as F + +DEFAULT_MIN_BIN_WIDTH = 1e-3 +DEFAULT_MIN_BIN_HEIGHT = 1e-3 +DEFAULT_MIN_DERIVATIVE = 1e-3 + + +def piecewise_rational_quadratic_transform( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails=None, + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if tails is None: + spline_fn = rational_quadratic_spline + spline_kwargs = {} + else: + spline_fn = unconstrained_rational_quadratic_spline + spline_kwargs = {"tails": tails, "tail_bound": tail_bound} + + outputs, logabsdet = spline_fn( + inputs=inputs, + unnormalized_widths=unnormalized_widths, + unnormalized_heights=unnormalized_heights, + unnormalized_derivatives=unnormalized_derivatives, + inverse=inverse, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + **spline_kwargs, + ) + return outputs, logabsdet + + +def searchsorted(bin_locations, inputs, eps=1e-6): + bin_locations[..., -1] += eps + return torch.sum(inputs[..., None] >= bin_locations, dim=-1) - 1 + + +def unconstrained_rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + tails="linear", + tail_bound=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound) + outside_interval_mask = ~inside_interval_mask + + outputs = torch.zeros_like(inputs) + logabsdet = torch.zeros_like(inputs) + + if tails == "linear": + unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1)) + constant = np.log(np.exp(1 - min_derivative) - 1) + unnormalized_derivatives[..., 0] = constant + unnormalized_derivatives[..., -1] = constant + + outputs[outside_interval_mask] = inputs[outside_interval_mask] + logabsdet[outside_interval_mask] = 0 + else: + raise RuntimeError("{} tails are not implemented.".format(tails)) + + ( + outputs[inside_interval_mask], + logabsdet[inside_interval_mask], + ) = rational_quadratic_spline( + inputs=inputs[inside_interval_mask], + unnormalized_widths=unnormalized_widths[inside_interval_mask, :], + unnormalized_heights=unnormalized_heights[inside_interval_mask, :], + unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :], + inverse=inverse, + left=-tail_bound, + right=tail_bound, + bottom=-tail_bound, + top=tail_bound, + min_bin_width=min_bin_width, + min_bin_height=min_bin_height, + min_derivative=min_derivative, + ) + + return outputs, logabsdet + + +def rational_quadratic_spline( + inputs, + unnormalized_widths, + unnormalized_heights, + unnormalized_derivatives, + inverse=False, + left=0.0, + right=1.0, + bottom=0.0, + top=1.0, + min_bin_width=DEFAULT_MIN_BIN_WIDTH, + min_bin_height=DEFAULT_MIN_BIN_HEIGHT, + min_derivative=DEFAULT_MIN_DERIVATIVE, +): + if torch.min(inputs) < left or torch.max(inputs) > right: + raise ValueError("Input to a transform is not within its domain") + + num_bins = unnormalized_widths.shape[-1] + + if min_bin_width * num_bins > 1.0: + raise ValueError("Minimal bin width too large for the number of bins") + if min_bin_height * num_bins > 1.0: + raise ValueError("Minimal bin height too large for the number of bins") + + widths = F.softmax(unnormalized_widths, dim=-1) + widths = min_bin_width + (1 - min_bin_width * num_bins) * widths + cumwidths = torch.cumsum(widths, dim=-1) + cumwidths = F.pad(cumwidths, pad=(1, 0), mode="constant", value=0.0) + cumwidths = (right - left) * cumwidths + left + cumwidths[..., 0] = left + cumwidths[..., -1] = right + widths = cumwidths[..., 1:] - cumwidths[..., :-1] + + derivatives = min_derivative + F.softplus(unnormalized_derivatives) + + heights = F.softmax(unnormalized_heights, dim=-1) + heights = min_bin_height + (1 - min_bin_height * num_bins) * heights + cumheights = torch.cumsum(heights, dim=-1) + cumheights = F.pad(cumheights, pad=(1, 0), mode="constant", value=0.0) + cumheights = (top - bottom) * cumheights + bottom + cumheights[..., 0] = bottom + cumheights[..., -1] = top + heights = cumheights[..., 1:] - cumheights[..., :-1] + + if inverse: + bin_idx = searchsorted(cumheights, inputs)[..., None] + else: + bin_idx = searchsorted(cumwidths, inputs)[..., None] + + input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0] + input_bin_widths = widths.gather(-1, bin_idx)[..., 0] + + input_cumheights = cumheights.gather(-1, bin_idx)[..., 0] + delta = heights / widths + input_delta = delta.gather(-1, bin_idx)[..., 0] + + input_derivatives = derivatives.gather(-1, bin_idx)[..., 0] + input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0] + + input_heights = heights.gather(-1, bin_idx)[..., 0] + + if inverse: + a = (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + input_heights * (input_delta - input_derivatives) + b = input_heights * input_derivatives - (inputs - input_cumheights) * ( + input_derivatives + input_derivatives_plus_one - 2 * input_delta + ) + c = -input_delta * (inputs - input_cumheights) + + discriminant = b.pow(2) - 4 * a * c + assert (discriminant >= 0).all() + + root = (2 * c) / (-b - torch.sqrt(discriminant)) + outputs = root * input_bin_widths + input_cumwidths + + theta_one_minus_theta = root * (1 - root) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta + ) + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * root.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - root).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, -logabsdet + else: + theta = (inputs - input_cumwidths) / input_bin_widths + theta_one_minus_theta = theta * (1 - theta) + + numerator = input_heights * (input_delta * theta.pow(2) + input_derivatives * theta_one_minus_theta) + denominator = input_delta + ( + (input_derivatives + input_derivatives_plus_one - 2 * input_delta) * theta_one_minus_theta + ) + outputs = input_cumheights + numerator / denominator + + derivative_numerator = input_delta.pow(2) * ( + input_derivatives_plus_one * theta.pow(2) + + 2 * input_delta * theta_one_minus_theta + + input_derivatives * (1 - theta).pow(2) + ) + logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator) + + return outputs, logabsdet