mirror of https://github.com/coqui-ai/TTS.git
.compute update
This commit is contained in:
parent
e825944100
commit
6e86d0d0c4
8
.compute
8
.compute
|
@ -1,5 +1,5 @@
|
|||
#!/bin/bash
|
||||
source ../tmp/venv/bin/activate
|
||||
# python extract_features.py --data_path ${DATA_ROOT}/shared/data/keithito/LJSpeech-1.1/ --cache_path ~/tts_cache/ --config config.json --num_proc 12 --dataset ljspeech --meta_file metadata.csv --val_split 1000 --process_audio true
|
||||
# python train.py --config_path config.json --data_path ~/tts_cache/ --debug true
|
||||
python train.py --config_path config.json --data_path ${DATA_ROOT}/shared/data/Blizzard/Nancy/ --debug true
|
||||
pip3 install https://download.pytorch.org/whl/cu100/torch-1.0.1.post2-cp36-cp36m-linux_x86_64.whl
|
||||
yes | apt-get install espeak
|
||||
python3 setup.py develop
|
||||
python3 train.py --config_path config_cluster.json --data_path ${SHARED_DIR}/data/Blizzard/Nancy/ --debug true
|
||||
|
|
|
@ -0,0 +1,60 @@
|
|||
{
|
||||
"model_name": "tts-master",
|
||||
"model_description": "tts master cluster test",
|
||||
|
||||
"audio":{
|
||||
"audio_processor": "audio", // to use dictate different audio processors, if available.
|
||||
// Audio processing parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 22050, // wav sample-rate. If different than the original data, it is resampled.
|
||||
"frame_length_ms": 50, // stft window length in ms.
|
||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"min_level_db": -100, // normalization range
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||
"symmetric_norm": false, // move normalization to range [-1, 1]
|
||||
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"mel_fmin": null, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": null, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
|
||||
"embedding_size": 256, // Character embedding vector length. You don't need to change it in general.
|
||||
"text_cleaner": "phoneme_cleaners",
|
||||
"epochs": 1000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||
"loss_weight": 0.0, // loss weight to emphasize lower frequencies. Lower frequencies are in general more important for speech signals.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":32,
|
||||
"r": 5, // Number of frames to predict for step.
|
||||
"wd": 0.00001, // Weight decay weight.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"save_step": 5000, // Number of training steps expected to save traning stats and checkpoints.
|
||||
"print_step": 50, // Number of steps to log traning on console.
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
"run_eval": true,
|
||||
"data_path": "/media/erogol/data_ssd/Data/LJSpeech-1.1", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "prompts_train.data", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "prompts_val.data", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "nancy", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 300, // DATASET-RELATED: maximum text length
|
||||
"output_path": "models/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"phoneme_cache_path": "phonemes_cache", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us" // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
}
|
Loading…
Reference in New Issue