mirror of https://github.com/coqui-ai/TTS.git
Constant queue size for autoregression window
This commit is contained in:
parent
11b6080cfd
commit
6ea31e47df
|
@ -309,7 +309,7 @@ class Decoder(nn.Module):
|
||||||
self.memory_size = memory_size if memory_size > 0 else r
|
self.memory_size = memory_size if memory_size > 0 else r
|
||||||
self.memory_dim = memory_dim
|
self.memory_dim = memory_dim
|
||||||
# memory -> |Prenet| -> processed_memory
|
# memory -> |Prenet| -> processed_memory
|
||||||
self.prenet = Prenet(memory_dim * memory_dim * self.memory_size, out_features=[256, 128])
|
self.prenet = Prenet(memory_dim * self.memory_size, out_features=[256, 128])
|
||||||
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
|
# processed_inputs, processed_memory -> |Attention| -> Attention, attention, RNN_State
|
||||||
self.attention_rnn = AttentionRNNCell(
|
self.attention_rnn = AttentionRNNCell(
|
||||||
out_dim=128,
|
out_dim=128,
|
||||||
|
|
|
@ -13,6 +13,7 @@ class Tacotron(nn.Module):
|
||||||
mel_dim=80,
|
mel_dim=80,
|
||||||
r=5,
|
r=5,
|
||||||
padding_idx=None,
|
padding_idx=None,
|
||||||
|
memory_size=5,
|
||||||
attn_windowing=False):
|
attn_windowing=False):
|
||||||
super(Tacotron, self).__init__()
|
super(Tacotron, self).__init__()
|
||||||
self.r = r
|
self.r = r
|
||||||
|
@ -23,7 +24,7 @@ class Tacotron(nn.Module):
|
||||||
print(" | > Number of characters : {}".format(num_chars))
|
print(" | > Number of characters : {}".format(num_chars))
|
||||||
self.embedding.weight.data.normal_(0, 0.3)
|
self.embedding.weight.data.normal_(0, 0.3)
|
||||||
self.encoder = Encoder(embedding_dim)
|
self.encoder = Encoder(embedding_dim)
|
||||||
self.decoder = Decoder(256, mel_dim, r, attn_windowing)
|
self.decoder = Decoder(256, mel_dim, r, memory_size, attn_windowing)
|
||||||
self.postnet = PostCBHG(mel_dim)
|
self.postnet = PostCBHG(mel_dim)
|
||||||
self.last_linear = nn.Sequential(
|
self.last_linear = nn.Sequential(
|
||||||
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
nn.Linear(self.postnet.cbhg.gru_features * 2, linear_dim),
|
||||||
|
|
2
train.py
2
train.py
|
@ -357,7 +357,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step):
|
||||||
|
|
||||||
def main(args):
|
def main(args):
|
||||||
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
||||||
model = Tacotron(num_chars, c.embedding_size, ap.num_freq, ap.num_mels, c.r)
|
model = Tacotron(num_chars, c.embedding_size, ap.num_freq, ap.num_mels, c.r, c.memory_size)
|
||||||
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
|
print(" | > Num output units : {}".format(ap.num_freq), flush=True)
|
||||||
|
|
||||||
optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
|
optimizer = optim.Adam(model.parameters(), lr=c.lr, weight_decay=0)
|
||||||
|
|
Loading…
Reference in New Issue