mirror of https://github.com/coqui-ai/TTS.git
Fix unit tests
This commit is contained in:
parent
7a0eba517f
commit
6f33506d89
|
@ -1,5 +1,6 @@
|
|||
import argparse
|
||||
import os
|
||||
import torch
|
||||
from argparse import RawTextHelpFormatter
|
||||
|
||||
import torch
|
||||
|
@ -8,7 +9,7 @@ from tqdm import tqdm
|
|||
from TTS.config import load_config
|
||||
from TTS.tts.datasets import load_tts_samples
|
||||
from TTS.tts.utils.managers import save_file
|
||||
from TTS.tts.utils.speakers import SpeakerManager
|
||||
from TTS.tts.utils.managers import EmbeddingManager
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="""Compute embedding vectors for each wav file in a dataset.\n\n"""
|
||||
|
@ -25,6 +26,7 @@ parser.add_argument("--output_path", type=str, help="Path for output `pth` or `j
|
|||
parser.add_argument("--old_file", type=str, help="Previous embedding file to only compute new audios.", default=None)
|
||||
parser.add_argument("--disable_cuda", type=bool, help="Flag to disable cuda.", default=False)
|
||||
parser.add_argument("--no_eval", type=bool, help="Do not compute eval?. Default False", default=False)
|
||||
parser.add_argument("--use_predicted_label", type=bool, help="If True and predicted label is available with will use it.", default=False)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
|
@ -39,20 +41,20 @@ if meta_data_eval is None:
|
|||
else:
|
||||
wav_files = meta_data_train + meta_data_eval
|
||||
|
||||
encoder_manager = SpeakerManager(
|
||||
encoder_manager = EmbeddingManager(
|
||||
encoder_model_path=args.model_path,
|
||||
encoder_config_path=args.config_path,
|
||||
d_vectors_file_path=args.old_file,
|
||||
embedding_file_path=args.old_file,
|
||||
use_cuda=use_cuda,
|
||||
)
|
||||
|
||||
class_name_key = encoder_manager.encoder_config.class_name_key
|
||||
|
||||
# compute speaker embeddings
|
||||
speaker_mapping = {}
|
||||
class_mapping = {}
|
||||
for idx, wav_file in enumerate(tqdm(wav_files)):
|
||||
if isinstance(wav_file, dict):
|
||||
class_name = wav_file[class_name_key]
|
||||
class_name = wav_file[class_name_key] if class_name_key in wav_file else None
|
||||
wav_file = wav_file["audio_file"]
|
||||
else:
|
||||
class_name = None
|
||||
|
@ -65,20 +67,37 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
|||
# extract the embedding
|
||||
embedd = encoder_manager.compute_embedding_from_clip(wav_file)
|
||||
|
||||
# create speaker_mapping if target dataset is defined
|
||||
speaker_mapping[wav_file_name] = {}
|
||||
speaker_mapping[wav_file_name]["name"] = class_name
|
||||
speaker_mapping[wav_file_name]["embedding"] = embedd
|
||||
if args.use_predicted_label:
|
||||
map_classid_to_classname = getattr(encoder_manager.encoder_config, 'map_classid_to_classname', None)
|
||||
if encoder_manager.encoder_criterion is not None and map_classid_to_classname is not None:
|
||||
embedding = torch.FloatTensor(embedd).unsqueeze(0)
|
||||
if encoder_manager.use_cuda:
|
||||
embedding = embedding.cuda()
|
||||
|
||||
if speaker_mapping:
|
||||
# save speaker_mapping if target dataset is defined
|
||||
if os.path.isdir(args.output_path):
|
||||
mapping_file_path = os.path.join(args.output_path, "speakers.pth")
|
||||
class_id = encoder_manager.encoder_criterion.softmax.inference(embedding).item()
|
||||
class_name = map_classid_to_classname[str(class_id)]
|
||||
else:
|
||||
raise RuntimeError(
|
||||
" [!] use_predicted_label is enable and predicted_labels is not available !!"
|
||||
)
|
||||
|
||||
# create class_mapping if target dataset is defined
|
||||
class_mapping[wav_file_name] = {}
|
||||
class_mapping[wav_file_name]["name"] = class_name
|
||||
class_mapping[wav_file_name]["embedding"] = embedd
|
||||
|
||||
if class_mapping:
|
||||
# save class_mapping if target dataset is defined
|
||||
if ".json" not in args.output_path or ".pth" not in args.output_path:
|
||||
if class_name_key == "speaker_name":
|
||||
mapping_file_path = os.path.join(args.output_path, "speakers.pth")
|
||||
else:
|
||||
mapping_file_path = os.path.join(args.output_path, "emotions.pth")
|
||||
else:
|
||||
mapping_file_path = args.output_path
|
||||
|
||||
if os.path.dirname(mapping_file_path) != "":
|
||||
os.makedirs(os.path.dirname(mapping_file_path), exist_ok=True)
|
||||
|
||||
save_file(speaker_mapping, mapping_file_path)
|
||||
print("Speaker embeddings saved at:", mapping_file_path)
|
||||
save_file(class_mapping, mapping_file_path)
|
||||
print("Embeddings saved at:", mapping_file_path)
|
||||
|
|
|
@ -237,6 +237,7 @@ If you don't specify any models, then it uses LJSpeech based English model.
|
|||
model_path = None
|
||||
config_path = None
|
||||
speakers_file_path = None
|
||||
emotions_file_path = None
|
||||
language_ids_file_path = None
|
||||
vocoder_path = None
|
||||
vocoder_config_path = None
|
||||
|
|
|
@ -265,9 +265,9 @@ class Synthesizer(object):
|
|||
|
||||
# handle emotion
|
||||
emotion_embedding, emotion_id = None, None
|
||||
if self.tts_emotions_file or hasattr(self.tts_model.emotion_manager, "ids"):
|
||||
if self.tts_emotions_file or (getattr(self.tts_model, "emotion_manager", None) and getattr(self.tts_model.emotion_manager, "ids", None)):
|
||||
if emotion_name and isinstance(emotion_name, str):
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False):
|
||||
if getattr(self.tts_config, "use_external_emotions_embeddings", False) or (getattr(self.tts_config, "model_args", None) and getattr(self.tts_config.model_args, "use_external_emotions_embeddings", False)):
|
||||
# get the average speaker embedding from the saved embeddings.
|
||||
emotion_embedding = self.tts_model.emotion_manager.get_mean_embedding(emotion_name, num_samples=None, randomize=False)
|
||||
emotion_embedding = np.array(emotion_embedding)[None, :] # [1 x embedding_dim]
|
||||
|
|
Loading…
Reference in New Issue