mirror of https://github.com/coqui-ai/TTS.git
refactor(tortoise): remove unused do_checkpoint arguments
These are assigned but not used for anything.
This commit is contained in:
parent
4ba83f42ab
commit
705551c60c
|
@ -93,12 +93,10 @@ class AttentionBlock(nn.Module):
|
|||
channels,
|
||||
num_heads=1,
|
||||
num_head_channels=-1,
|
||||
do_checkpoint=True,
|
||||
relative_pos_embeddings=False,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
self.do_checkpoint = do_checkpoint
|
||||
if num_head_channels == -1:
|
||||
self.num_heads = num_heads
|
||||
else:
|
||||
|
|
|
@ -175,7 +175,6 @@ class ConditioningEncoder(nn.Module):
|
|||
embedding_dim,
|
||||
attn_blocks=6,
|
||||
num_attn_heads=4,
|
||||
do_checkpointing=False,
|
||||
mean=False,
|
||||
):
|
||||
super().__init__()
|
||||
|
@ -185,7 +184,6 @@ class ConditioningEncoder(nn.Module):
|
|||
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
self.do_checkpointing = do_checkpointing
|
||||
self.mean = mean
|
||||
|
||||
def forward(self, x):
|
||||
|
|
|
@ -16,7 +16,6 @@ class ResBlock(nn.Module):
|
|||
up=False,
|
||||
down=False,
|
||||
kernel_size=3,
|
||||
do_checkpoint=True,
|
||||
):
|
||||
super().__init__()
|
||||
self.channels = channels
|
||||
|
@ -24,7 +23,6 @@ class ResBlock(nn.Module):
|
|||
self.out_channels = out_channels or channels
|
||||
self.use_conv = use_conv
|
||||
self.use_scale_shift_norm = use_scale_shift_norm
|
||||
self.do_checkpoint = do_checkpoint
|
||||
padding = 1 if kernel_size == 3 else 2
|
||||
|
||||
self.in_layers = nn.Sequential(
|
||||
|
@ -92,14 +90,14 @@ class AudioMiniEncoder(nn.Module):
|
|||
self.layers = depth
|
||||
for l in range(depth):
|
||||
for r in range(resnet_blocks):
|
||||
res.append(ResBlock(ch, dropout, do_checkpoint=False, kernel_size=kernel_size))
|
||||
res.append(ResBlock(ch, dropout, kernel_size=kernel_size))
|
||||
res.append(Downsample(ch, use_conv=True, out_channels=ch * 2, factor=downsample_factor))
|
||||
ch *= 2
|
||||
self.res = nn.Sequential(*res)
|
||||
self.final = nn.Sequential(normalization(ch), nn.SiLU(), nn.Conv1d(ch, embedding_dim, 1))
|
||||
attn = []
|
||||
for a in range(attn_blocks):
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads, do_checkpoint=False))
|
||||
attn.append(AttentionBlock(embedding_dim, num_attn_heads))
|
||||
self.attn = nn.Sequential(*attn)
|
||||
self.dim = embedding_dim
|
||||
|
||||
|
|
|
@ -196,31 +196,26 @@ class DiffusionTts(nn.Module):
|
|||
model_channels * 2,
|
||||
num_heads,
|
||||
relative_pos_embeddings=True,
|
||||
do_checkpoint=False,
|
||||
),
|
||||
AttentionBlock(
|
||||
model_channels * 2,
|
||||
num_heads,
|
||||
relative_pos_embeddings=True,
|
||||
do_checkpoint=False,
|
||||
),
|
||||
AttentionBlock(
|
||||
model_channels * 2,
|
||||
num_heads,
|
||||
relative_pos_embeddings=True,
|
||||
do_checkpoint=False,
|
||||
),
|
||||
AttentionBlock(
|
||||
model_channels * 2,
|
||||
num_heads,
|
||||
relative_pos_embeddings=True,
|
||||
do_checkpoint=False,
|
||||
),
|
||||
AttentionBlock(
|
||||
model_channels * 2,
|
||||
num_heads,
|
||||
relative_pos_embeddings=True,
|
||||
do_checkpoint=False,
|
||||
),
|
||||
)
|
||||
self.unconditioned_embedding = nn.Parameter(torch.randn(1, model_channels, 1))
|
||||
|
|
Loading…
Reference in New Issue