mirror of https://github.com/coqui-ai/TTS.git
Fix lint checks
This commit is contained in:
parent
33fd07a209
commit
711a46506f
|
@ -1,5 +1,4 @@
|
|||
import argparse
|
||||
import os
|
||||
import torch
|
||||
from argparse import RawTextHelpFormatter
|
||||
|
||||
|
@ -45,7 +44,7 @@ speaker_manager = SpeakerManager(
|
|||
|
||||
if speaker_manager.speaker_encoder_config.map_classid_to_classname is not None:
|
||||
map_classid_to_classname = speaker_manager.speaker_encoder_config.map_classid_to_classname
|
||||
else:
|
||||
else:
|
||||
map_classid_to_classname = None
|
||||
|
||||
# compute speaker embeddings
|
||||
|
@ -69,20 +68,19 @@ for idx, wav_file in enumerate(tqdm(wav_files)):
|
|||
predicted_label = map_classid_to_classname[str(class_id)]
|
||||
else:
|
||||
predicted_label = None
|
||||
|
||||
|
||||
if class_name is not None and predicted_label is not None:
|
||||
is_equal = int(class_name == predicted_label)
|
||||
if class_name not in class_acc_dict:
|
||||
class_acc_dict[class_name] = [is_equal]
|
||||
else:
|
||||
class_acc_dict[class_name].append(is_equal)
|
||||
is_equal = int(class_name == predicted_label)
|
||||
if class_name not in class_acc_dict:
|
||||
class_acc_dict[class_name] = [is_equal]
|
||||
else:
|
||||
class_acc_dict[class_name].append(is_equal)
|
||||
else:
|
||||
print("Error: class_name or/and predicted_label are None")
|
||||
exit()
|
||||
raise RuntimeError("Error: class_name or/and predicted_label are None")
|
||||
|
||||
acc_avg = 0
|
||||
for key in class_acc_dict:
|
||||
acc = sum(class_acc_dict[key])/len(class_acc_dict[key])
|
||||
for key, values in class_acc_dict.items():
|
||||
acc = sum(values)/len(values)
|
||||
print("Class", key, "Accuracy:", acc)
|
||||
acc_avg += acc
|
||||
|
||||
|
|
|
@ -12,7 +12,7 @@ from trainer.torch import NoamLR
|
|||
|
||||
from TTS.encoder.dataset import EncoderDataset
|
||||
from TTS.encoder.losses import AngleProtoLoss, GE2ELoss, SoftmaxAngleProtoLoss
|
||||
from TTS.encoder.utils.generic_utils import save_best_model, setup_speaker_encoder_model
|
||||
from TTS.encoder.utils.generic_utils import save_best_model, save_checkpoint, setup_speaker_encoder_model
|
||||
from TTS.encoder.utils.samplers import PerfectBatchSampler
|
||||
from TTS.encoder.utils.training import init_training
|
||||
from TTS.encoder.utils.visual import plot_embeddings
|
||||
|
@ -55,14 +55,13 @@ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False
|
|||
batch_size=num_classes_in_batch*num_utter_per_class, # total batch size
|
||||
num_classes_in_batch=num_classes_in_batch,
|
||||
num_gpus=1,
|
||||
shuffle=False if is_val else True,
|
||||
shuffle=not is_val,
|
||||
drop_last=True)
|
||||
|
||||
if len(classes) < num_classes_in_batch:
|
||||
if is_val:
|
||||
raise RuntimeError(f"config.eval_num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Eval dataset) !")
|
||||
else:
|
||||
raise RuntimeError(f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !")
|
||||
raise RuntimeError(f"config.num_classes_in_batch ({num_classes_in_batch}) need to be <= {len(classes)} (Number total of Classes in the Train dataset) !")
|
||||
|
||||
# set the classes to avoid get wrong class_id when the number of training and eval classes are not equal
|
||||
if is_val:
|
||||
|
@ -73,16 +72,14 @@ def setup_loader(ap: AudioProcessor, is_val: bool = False, verbose: bool = False
|
|||
num_workers=c.num_loader_workers,
|
||||
batch_sampler=sampler,
|
||||
collate_fn=dataset.collate_fn,
|
||||
)
|
||||
)
|
||||
|
||||
return loader, classes, dataset.get_map_classid_to_classname()
|
||||
|
||||
def evaluation(model, criterion, data_loader, global_step):
|
||||
eval_loss = 0
|
||||
for step, data in enumerate(data_loader):
|
||||
for _, data in enumerate(data_loader):
|
||||
with torch.no_grad():
|
||||
start_time = time.time()
|
||||
|
||||
# setup input data
|
||||
inputs, labels = data
|
||||
|
||||
|
@ -121,7 +118,7 @@ def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader,
|
|||
for epoch in range(c.epochs):
|
||||
tot_loss = 0
|
||||
epoch_time = 0
|
||||
for step, data in enumerate(data_loader):
|
||||
for _, data in enumerate(data_loader):
|
||||
start_time = time.time()
|
||||
|
||||
# setup input data
|
||||
|
@ -129,22 +126,19 @@ def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader,
|
|||
# agroup samples of each class in the batch. perfect sampler produces [3,2,1,3,2,1] we need [3,3,2,2,1,1]
|
||||
labels = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||
inputs = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||
"""
|
||||
# ToDo: move it to a unit test
|
||||
labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||
inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||
idx = 0
|
||||
for j in range(0, c.num_classes_in_batch, 1):
|
||||
for i in range(j, len(labels), c.num_classes_in_batch):
|
||||
if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
|
||||
print("Invalid")
|
||||
print(labels)
|
||||
exit()
|
||||
idx += 1
|
||||
labels = labels_converted
|
||||
inputs = inputs_converted
|
||||
print(labels)
|
||||
print(inputs.shape)"""
|
||||
# labels_converted = torch.transpose(labels.view(c.num_utter_per_class, c.num_classes_in_batch), 0, 1).reshape(labels.shape)
|
||||
# inputs_converted = torch.transpose(inputs.view(c.num_utter_per_class, c.num_classes_in_batch, -1), 0, 1).reshape(inputs.shape)
|
||||
# idx = 0
|
||||
# for j in range(0, c.num_classes_in_batch, 1):
|
||||
# for i in range(j, len(labels), c.num_classes_in_batch):
|
||||
# if not torch.all(labels[i].eq(labels_converted[idx])) or not torch.all(inputs[i].eq(inputs_converted[idx])):
|
||||
# print("Invalid")
|
||||
# print(labels)
|
||||
# exit()
|
||||
# idx += 1
|
||||
# labels = labels_converted
|
||||
# inputs = inputs_converted
|
||||
|
||||
loader_time = time.time() - end_time
|
||||
global_step += 1
|
||||
|
@ -212,12 +206,12 @@ def train(model, optimizer, scheduler, criterion, data_loader, eval_data_loader,
|
|||
save_checkpoint(model, optimizer, criterion, loss.item(), OUT_PATH, global_step, epoch)
|
||||
|
||||
end_time = time.time()
|
||||
|
||||
|
||||
print("")
|
||||
print(
|
||||
" | > Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} "
|
||||
">>> Epoch:{} AvgLoss: {:.5f} GradNorm:{:.5f} "
|
||||
"EpochTime:{:.2f} AvGLoaderTime:{:.2f} ".format(
|
||||
epoch, tot_loss/len(data_loader), grad_norm, epoch_time, avg_loader_time, current_lr
|
||||
epoch, tot_loss/len(data_loader), grad_norm, epoch_time, avg_loader_time
|
||||
),
|
||||
flush=True,
|
||||
)
|
||||
|
|
|
@ -1,10 +1,9 @@
|
|||
import random
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.utils.data import Dataset
|
||||
|
||||
from TTS.encoder.utils.generic_utils import AugmentWAV, Storage
|
||||
from TTS.encoder.utils.generic_utils import AugmentWAV
|
||||
|
||||
class EncoderDataset(Dataset):
|
||||
def __init__(
|
||||
|
@ -33,7 +32,7 @@ class EncoderDataset(Dataset):
|
|||
self.ap = ap
|
||||
self.verbose = verbose
|
||||
self.use_torch_spec = use_torch_spec
|
||||
self.__parse_items()
|
||||
self.classes, self.items = self.__parse_items()
|
||||
|
||||
self.classname_to_classid = {key: i for i, key in enumerate(self.classes)}
|
||||
|
||||
|
@ -78,15 +77,15 @@ class EncoderDataset(Dataset):
|
|||
k: v for (k, v) in class_to_utters.items() if len(v) >= self.num_utter_per_class
|
||||
}
|
||||
|
||||
self.classes = list(class_to_utters.keys())
|
||||
self.classes.sort()
|
||||
classes = list(class_to_utters.keys())
|
||||
classes.sort()
|
||||
|
||||
new_items = []
|
||||
for item in self.items:
|
||||
path_ = item[1]
|
||||
class_name = item[2]
|
||||
# ignore filtered classes
|
||||
if class_name not in self.classes:
|
||||
if class_name not in classes:
|
||||
continue
|
||||
# ignore small audios
|
||||
if self.load_wav(path_).shape[0] - self.seq_len <= 0:
|
||||
|
@ -94,9 +93,7 @@ class EncoderDataset(Dataset):
|
|||
|
||||
new_items.append({"wav_file_path": path_, "class_name": class_name})
|
||||
|
||||
self.items = new_items
|
||||
|
||||
|
||||
return classes, new_items
|
||||
def __len__(self):
|
||||
return len(self.items)
|
||||
|
||||
|
|
|
@ -3,7 +3,6 @@ import glob
|
|||
import os
|
||||
import random
|
||||
import re
|
||||
from multiprocessing import Manager
|
||||
|
||||
import numpy as np
|
||||
from scipy import signal
|
||||
|
@ -13,50 +12,6 @@ from TTS.encoder.models.resnet import ResNetSpeakerEncoder
|
|||
from TTS.utils.io import save_fsspec
|
||||
|
||||
|
||||
class Storage(object):
|
||||
def __init__(self, maxsize, storage_batchs, num_classes_in_batch, num_threads=8):
|
||||
# use multiprocessing for threading safe
|
||||
self.storage = Manager().list()
|
||||
self.maxsize = maxsize
|
||||
self.num_classes_in_batch = num_classes_in_batch
|
||||
self.num_threads = num_threads
|
||||
self.ignore_last_batch = False
|
||||
|
||||
if storage_batchs >= 3:
|
||||
self.ignore_last_batch = True
|
||||
|
||||
# used for fast random sample
|
||||
self.safe_storage_size = self.maxsize - self.num_threads
|
||||
if self.ignore_last_batch:
|
||||
self.safe_storage_size -= self.num_classes_in_batch
|
||||
|
||||
def __len__(self):
|
||||
return len(self.storage)
|
||||
|
||||
def full(self):
|
||||
return len(self.storage) >= self.maxsize
|
||||
|
||||
def append(self, item):
|
||||
# if storage is full, remove an item
|
||||
if self.full():
|
||||
self.storage.pop(0)
|
||||
|
||||
self.storage.append(item)
|
||||
|
||||
def get_random_sample(self):
|
||||
# safe storage size considering all threads remove one item from storage in same time
|
||||
storage_size = len(self.storage) - self.num_threads
|
||||
|
||||
if self.ignore_last_batch:
|
||||
storage_size -= self.num_classes_in_batch
|
||||
|
||||
return self.storage[random.randint(0, storage_size)]
|
||||
|
||||
def get_random_sample_fast(self):
|
||||
"""Call this method only when storage is full"""
|
||||
return self.storage[random.randint(0, self.safe_storage_size)]
|
||||
|
||||
|
||||
class AugmentWAV(object):
|
||||
def __init__(self, ap, augmentation_config):
|
||||
|
||||
|
|
|
@ -1,4 +1,3 @@
|
|||
import torch
|
||||
import random
|
||||
from torch.utils.data.sampler import Sampler, SubsetRandomSampler
|
||||
|
||||
|
@ -12,6 +11,7 @@ class SubsetSampler(Sampler):
|
|||
"""
|
||||
|
||||
def __init__(self, indices):
|
||||
super().__init__(indices)
|
||||
self.indices = indices
|
||||
|
||||
def __iter__(self):
|
||||
|
@ -35,15 +35,17 @@ class PerfectBatchSampler(Sampler):
|
|||
"""
|
||||
|
||||
def __init__(self, dataset_items, classes, batch_size, num_classes_in_batch, num_gpus=1, shuffle=True, drop_last=False):
|
||||
|
||||
super().__init__(dataset_items)
|
||||
assert batch_size % (num_classes_in_batch * num_gpus) == 0, (
|
||||
'Batch size must be divisible by number of classes times the number of data parallel devices (if enabled).')
|
||||
|
||||
label_indices = {}
|
||||
for idx in range(len(dataset_items)):
|
||||
label = dataset_items[idx]['class_name']
|
||||
if label not in label_indices: label_indices[label] = []
|
||||
label_indices[label].append(idx)
|
||||
for idx, item in enumerate(dataset_items):
|
||||
label = item['class_name']
|
||||
if label not in label_indices.keys():
|
||||
label_indices[label] = [idx]
|
||||
else:
|
||||
label_indices[label].append(idx)
|
||||
|
||||
if shuffle:
|
||||
self._samplers = [SubsetRandomSampler(label_indices[key]) for key in classes]
|
||||
|
@ -68,16 +70,16 @@ class PerfectBatchSampler(Sampler):
|
|||
|
||||
while True:
|
||||
b = []
|
||||
for i in range(len(iters)):
|
||||
for i, it in enumerate(iters):
|
||||
if valid_samplers_idx is not None and i not in valid_samplers_idx:
|
||||
continue
|
||||
it = iters[i]
|
||||
idx = next(it, None)
|
||||
if idx is None:
|
||||
done = True
|
||||
break
|
||||
b.append(idx)
|
||||
if done: break
|
||||
if done:
|
||||
break
|
||||
batch += b
|
||||
if len(batch) == self._batch_size:
|
||||
yield batch
|
||||
|
@ -97,4 +99,4 @@ class PerfectBatchSampler(Sampler):
|
|||
|
||||
def __len__(self):
|
||||
class_batch_size = self._batch_size // self._num_classes_in_batch
|
||||
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)
|
||||
return min(((len(s) + class_batch_size - 1) // class_batch_size) for s in self._samplers)
|
||||
|
|
Loading…
Reference in New Issue