From 721e781216e782722b2603fbed8b5e2fe265e0c1 Mon Sep 17 00:00:00 2001 From: Eren Golge Date: Sun, 21 Jul 2019 16:32:56 +0200 Subject: [PATCH] config update --- config.json | 38 ++++++++++++++++++++------------------ 1 file changed, 20 insertions(+), 18 deletions(-) diff --git a/config.json b/config.json index 17b9207f..ea65c9f0 100644 --- a/config.json +++ b/config.json @@ -1,6 +1,6 @@ { - "run_name": "mozilla-no-loc-fattn-stopnet-sigmoid-loss_masking", - "run_description": "using forward attention, with original prenet, loss masking,separate stopnet, sigmoid. Compare this with 4817. Pytorch DPP", + "run_name": "ljspeech", + "run_description": "gradual training with prenet frame size 1. Comparing to memory queue in gradual training. ", "audio":{ // Audio processing parameters @@ -31,43 +31,45 @@ "reinit_layers": [], - "model": "Tacotron2", // one of the model in models/ + "model": "Tacotron", // one of the model in models/ "grad_clip": 1, // upper limit for gradients for clipping. "epochs": 1000, // total number of epochs to train. "lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate. "lr_decay": false, // if true, Noam learning rate decaying is applied through training. "warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr" - "windowing": false, // Enables attention windowing. Used only in eval mode. - "memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5. + "memory_size": -1, // ONLY TACOTRON - size of the memory queue used fro storing last decoder predictions for auto-regression. If < 0, memory queue is disabled and decoder only uses the last prediction frame. "attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron. "prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn". "prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet. - "use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. + "windowing": false, // Enables attention windowing. Used only in eval mode. + "use_forward_attn": false, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster. + "forward_attn_mask": false, "transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention. - "location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default. + "location_attn": true, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default. "loss_masking": true, // enable / disable loss masking against the sequence padding. "enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars. "stopnet": true, // Train stopnet predicting the end of synthesis. "separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER. - "tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. + "tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging. - "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. + "batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'. "eval_batch_size":16, - "r": 1, // Number of frames to predict for step. + "r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled. + "gradual_training": [[0, 7, 32], [10000, 5, 32], [50000, 3, 32], [130000, 2, 16], [290000, 1, 8]], // set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled. "wd": 0.000001, // Weight decay weight. "checkpoint": true, // If true, it saves checkpoints per "save_step" - "save_step": 1000, // Number of training steps expected to save traning stats and checkpoints. - "print_step": 10, // Number of steps to log traning on console. + "save_step": 10000, // Number of training steps expected to save traning stats and checkpoints. + "print_step": 25, // Number of steps to log traning on console. "batch_group_size": 0, //Number of batches to shuffle after bucketing. "run_eval": true, "test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time. "test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences. - "data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument - "meta_file_train": "metadata_train.txt", // DATASET-RELATED: metafile for training dataloader. - "meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader. - "dataset": "mozilla", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py - "min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training + "data_path": "/home/erogol/Data/LJSpeech-1.1/", // DATASET-RELATED: can overwritten from command argument + "meta_file_train": "metadata_train.csv", // DATASET-RELATED: metafile for training dataloader. + "meta_file_val": "metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader. + "dataset": "ljspeech", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py + "min_seq_len": 6, // DATASET-RELATED: minimum text length to use in training "max_seq_len": 150, // DATASET-RELATED: maximum text length "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs. "num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values. @@ -76,6 +78,6 @@ "use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation. "phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages "text_cleaner": "phoneme_cleaners", - "use_speaker_embedding": false // whether to use additional embeddings for separate speakers + "use_speaker_embedding": false }