update train_align_tts.py for coqpit

This commit is contained in:
Eren Gölge 2021-05-06 15:53:32 +02:00
parent 51a7e06945
commit 7227e8f1d2
2 changed files with 575 additions and 464 deletions

View File

@ -23,61 +23,63 @@ from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.arguments import init_training
from TTS.utils.audio import AudioProcessor
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import KeepAverage, count_parameters, remove_experiment_folder, set_init_dict
from TTS.utils.radam import RAdam
from TTS.utils.training import NoamLR, setup_torch_training_env
if __name__ == "__main__":
use_cuda, num_gpus = setup_torch_training_env(True, False)
# torch.autograd.set_detect_anomaly(True)
def setup_loader(ap, r, is_val=False, verbose=False):
if is_val and not c.run_eval:
if is_val and not config.run_eval:
loader = None
else:
dataset = MyDataset(
r,
c.text_cleaner,
config.text_cleaner,
compute_linear_spec=False,
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
tp=c.characters if "characters" in c.keys() else None,
add_blank=c["add_blank"] if "add_blank" in c.keys() else False,
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
tp=config.characters,
add_blank=config["add_blank"],
batch_group_size=0 if is_val else config.batch_group_size *
config.batch_size,
min_seq_len=config.min_seq_len,
max_seq_len=config.max_seq_len,
phoneme_cache_path=config.phoneme_cache_path,
use_phonemes=config.use_phonemes,
phoneme_language=config.phoneme_language,
enable_eos_bos=config.enable_eos_bos_chars,
use_noise_augment=not is_val,
verbose=verbose,
speaker_mapping=speaker_mapping
if c.use_speaker_embedding and c.use_external_speaker_embedding_file
else None,
speaker_mapping=speaker_mapping if config.use_speaker_embedding
and config.use_external_speaker_embedding_file else None,
)
if c.use_phonemes and c.compute_input_seq_cache:
if config.use_phonemes and config.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.compute_input_seq(config.num_loader_workers)
dataset.sort_items()
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.eval_batch_size if is_val else c.batch_size,
batch_size=config.eval_batch_size if is_val else config.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers,
num_workers=config.num_val_loader_workers
if is_val else config.num_loader_workers,
pin_memory=False,
)
return loader
def format_data(data):
# setup input data
text_input = data[0]
@ -89,13 +91,15 @@ if __name__ == "__main__":
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
if config.use_speaker_embedding:
if config.use_external_speaker_embedding_file:
# return precomputed embedding vector
speaker_c = data[8]
else:
# return speaker_id to be used by an embedding layer
speaker_c = [speaker_mapping[speaker_name] for speaker_name in speaker_names]
speaker_c = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_c = torch.LongTensor(speaker_c)
else:
speaker_c = None
@ -109,18 +113,21 @@ if __name__ == "__main__":
speaker_c = speaker_c.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, speaker_c, avg_text_length, avg_spec_length, item_idx
def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step, epoch, training_phase):
def train(data_loader, model, criterion, optimizer, scheduler, ap, global_step,
epoch, training_phase):
model.train()
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
batch_n_iter = int(
len(data_loader.dataset) / (config.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
end_time = time.time()
c_logger.print_train_start()
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
scaler = torch.cuda.amp.GradScaler() if config.mixed_precision else None
for num_iter, data in enumerate(data_loader):
start_time = time.time()
@ -142,10 +149,14 @@ if __name__ == "__main__":
optimizer.zero_grad()
# forward pass model
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
decoder_output, dur_output, dur_mas_output, alignments, _, _, logp = model.forward(
text_input, text_lengths, mel_targets, mel_lengths, g=speaker_c, phase=training_phase
)
text_input,
text_lengths,
mel_targets,
mel_lengths,
g=speaker_c,
phase=training_phase)
# compute loss
loss_dict = criterion(
@ -161,19 +172,21 @@ if __name__ == "__main__":
)
# backward pass with loss scaling
if c.mixed_precision:
if config.mixed_precision:
scaler.scale(loss_dict["loss"]).backward()
scaler.unscale_(optimizer)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), c.grad_clip)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
config.grad_clip)
scaler.step(optimizer)
scaler.update()
else:
loss_dict["loss"].backward()
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(), c.grad_clip)
grad_norm = torch.nn.utils.clip_grad_norm_(model.parameters(),
config.grad_clip)
optimizer.step()
# setup lr
if c.noam_schedule:
if config.noam_schedule:
scheduler.step()
# current_lr
@ -188,9 +201,12 @@ if __name__ == "__main__":
# aggregate losses from processes
if num_gpus > 1:
loss_dict["loss_l1"] = reduce_tensor(loss_dict["loss_l1"].data, num_gpus)
loss_dict["loss_ssim"] = reduce_tensor(loss_dict["loss_ssim"].data, num_gpus)
loss_dict["loss_dur"] = reduce_tensor(loss_dict["loss_dur"].data, num_gpus)
loss_dict["loss_l1"] = reduce_tensor(loss_dict["loss_l1"].data,
num_gpus)
loss_dict["loss_ssim"] = reduce_tensor(loss_dict["loss_ssim"].data,
num_gpus)
loss_dict["loss_dur"] = reduce_tensor(loss_dict["loss_dur"].data,
num_gpus)
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
# detach loss values
@ -211,7 +227,7 @@ if __name__ == "__main__":
keep_avg.update_values(update_train_values)
# print training progress
if global_step % c.print_step == 0:
if global_step % config.print_step == 0:
log_dict = {
"avg_spec_length": [avg_spec_length, 1], # value, precision
"avg_text_length": [avg_text_length, 1],
@ -219,18 +235,23 @@ if __name__ == "__main__":
"loader_time": [loader_time, 2],
"current_lr": current_lr,
}
c_logger.print_train_step(batch_n_iter, num_iter, global_step, log_dict, loss_dict, keep_avg.avg_values)
c_logger.print_train_step(batch_n_iter, num_iter, global_step,
log_dict, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
if global_step % c.tb_plot_step == 0:
iter_stats = {"lr": current_lr, "grad_norm": grad_norm, "step_time": step_time}
if global_step % config.tb_plot_step == 0:
iter_stats = {
"lr": current_lr,
"grad_norm": grad_norm,
"step_time": step_time
}
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
if c.checkpoint:
if global_step % config.save_step == 0:
if config.checkpoint:
# save model
save_checkpoint(
model,
@ -249,7 +270,8 @@ if __name__ == "__main__":
# Diagnostic visualizations
if decoder_output is not None:
idx = np.random.randint(mel_targets.shape[0])
pred_spec = decoder_output[idx].detach().data.cpu().numpy().T
pred_spec = decoder_output[idx].detach().data.cpu().numpy(
).T
gt_spec = mel_targets[idx].data.cpu().numpy().T
align_img = alignments[idx].data.cpu()
@ -263,7 +285,9 @@ if __name__ == "__main__":
# Sample audio
train_audio = ap.inv_melspectrogram(pred_spec.T)
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, c.audio["sample_rate"])
tb_logger.tb_train_audios(global_step,
{"TrainAudio": train_audio},
config.audio["sample_rate"])
end_time = time.time()
# print epoch stats
@ -274,12 +298,14 @@ if __name__ == "__main__":
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
if config.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@torch.no_grad()
def evaluate(data_loader, model, criterion, ap, global_step, epoch, training_phase):
def evaluate(data_loader, model, criterion, ap, global_step, epoch,
training_phase):
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
@ -289,13 +315,18 @@ if __name__ == "__main__":
start_time = time.time()
# format data
text_input, text_lengths, mel_targets, mel_lengths, speaker_c, _, _, _ = format_data(data)
text_input, text_lengths, mel_targets, mel_lengths, speaker_c, _, _, _ = format_data(
data)
# forward pass model
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
decoder_output, dur_output, dur_mas_output, alignments, _, _, logp = model.forward(
text_input, text_lengths, mel_targets, mel_lengths, g=speaker_c, phase=training_phase
)
text_input,
text_lengths,
mel_targets,
mel_lengths,
g=speaker_c,
phase=training_phase)
# compute loss
loss_dict = criterion(
@ -320,10 +351,14 @@ if __name__ == "__main__":
# aggregate losses from processes
if num_gpus > 1:
loss_dict["loss_l1"] = reduce_tensor(loss_dict["loss_l1"].data, num_gpus)
loss_dict["loss_ssim"] = reduce_tensor(loss_dict["loss_ssim"].data, num_gpus)
loss_dict["loss_dur"] = reduce_tensor(loss_dict["loss_dur"].data, num_gpus)
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
loss_dict["loss_l1"] = reduce_tensor(loss_dict["loss_l1"].data,
num_gpus)
loss_dict["loss_ssim"] = reduce_tensor(
loss_dict["loss_ssim"].data, num_gpus)
loss_dict["loss_dur"] = reduce_tensor(
loss_dict["loss_dur"].data, num_gpus)
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data,
num_gpus)
# detach loss values
loss_dict_new = dict()
@ -340,8 +375,9 @@ if __name__ == "__main__":
update_train_values["avg_" + key] = value
keep_avg.update_values(update_train_values)
if c.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
if config.print_eval:
c_logger.print_eval_step(num_iter, loss_dict,
keep_avg.avg_values)
if args.rank == 0:
# Diagnostic visualizations
@ -351,21 +387,27 @@ if __name__ == "__main__":
align_img = alignments[idx].data.cpu()
eval_figures = {
"prediction": plot_spectrogram(pred_spec, ap, output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap, output_fig=False),
"prediction": plot_spectrogram(pred_spec, ap,
output_fig=False),
"ground_truth": plot_spectrogram(gt_spec, ap,
output_fig=False),
"alignment": plot_alignment(align_img, output_fig=False),
}
# Sample audio
eval_audio = ap.inv_melspectrogram(pred_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
config.audio["sample_rate"])
# Plot Validation Stats
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch >= c.test_delay_epochs:
if c.test_sentences_file is None:
if args.rank == 0 and epoch >= config.test_delay_epochs:
if config.test_sentences_file:
with open(config.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
else:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
@ -373,19 +415,16 @@ if __name__ == "__main__":
"This cake is great. It's so delicious and moist.",
"Prior to November 22, 1963.",
]
else:
with open(c.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
speaker_embedding = speaker_mapping[
list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]
]["embedding"]
if config.use_speaker_embedding:
if config.use_external_speaker_embedding_file:
speaker_embedding = speaker_mapping[list(
speaker_mapping.keys())[randrange(
len(speaker_mapping) - 1)]]["embedding"]
speaker_id = None
else:
speaker_id = 0
@ -394,70 +433,79 @@ if __name__ == "__main__":
speaker_id = None
speaker_embedding = None
style_wav = c.get("style_wav_for_test")
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, _, postnet_output, _, _ = synthesis(
model,
test_sentence,
c,
config,
use_cuda,
ap,
speaker_id=speaker_id,
speaker_embedding=speaker_embedding,
style_wav=style_wav,
style_wav=None,
truncated=False,
enable_eos_bos_chars=c.enable_eos_bos_chars, # pylint: disable=unused-argument
enable_eos_bos_chars=config.enable_eos_bos_chars, # pylint: disable=unused-argument
use_griffin_lim=True,
do_trim_silence=False,
)
file_path = os.path.join(AUDIO_PATH, str(global_step))
os.makedirs(file_path, exist_ok=True)
file_path = os.path.join(file_path, "TestSentence_{}.wav".format(idx))
file_path = os.path.join(file_path,
"TestSentence_{}.wav".format(idx))
ap.save_wav(wav, file_path)
test_audios["{}-audio".format(idx)] = wav
test_figures["{}-prediction".format(idx)] = plot_spectrogram(postnet_output, ap)
test_figures["{}-alignment".format(idx)] = plot_alignment(alignment)
test_figures["{}-prediction".format(idx)] = plot_spectrogram(
postnet_output, ap)
test_figures["{}-alignment".format(idx)] = plot_alignment(
alignment)
except: # pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios, c.audio["sample_rate"])
tb_logger.tb_test_audios(global_step, test_audios,
config.audio["sample_rate"])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg.avg_values
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes, model_characters, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if "characters" in c.keys():
symbols, phonemes = make_symbols(**c.characters)
ap = AudioProcessor(**config.audio.to_dict())
if config.has("characters") and config.characters:
symbols, phonemes = make_symbols(**config.characters.to_dict())
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"])
init_distributed(args.rank, num_gpus, args.group_id,
config.distributed["backend"],
config.distributed["url"])
# set model characters
model_characters = phonemes if c.use_phonemes else symbols
model_characters = phonemes if config.use_phonemes else symbols
num_chars = len(model_characters)
# load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets, eval_split=True)
# set the portion of the data used for training if set in config.json
if "train_portion" in c.keys():
meta_data_train = meta_data_train[: int(len(meta_data_train) * c.train_portion)]
if "eval_portion" in c.keys():
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * c.eval_portion)]
meta_data_train, meta_data_eval = load_meta_data(config.datasets,
eval_split=True)
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(
config, args, meta_data_train, OUT_PATH)
# setup model
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim=speaker_embedding_dim)
optimizer = RAdam(model.parameters(), lr=c.lr, weight_decay=0, betas=(0.9, 0.98), eps=1e-9)
criterion = AlignTTSLoss(c)
model = setup_model(num_chars,
num_speakers,
config,
speaker_embedding_dim=speaker_embedding_dim)
optimizer = RAdam(model.parameters(),
lr=config.lr,
weight_decay=0,
betas=(0.9, 0.98),
eps=1e-9)
criterion = AlignTTSLoss(config)
if args.restore_path:
print(f" > Restoring from {os.path.basename(args.restore_path)} ...")
@ -466,19 +514,20 @@ if __name__ == "__main__":
# TODO: fix optimizer init, model.cuda() needs to be called before
# optimizer restore
optimizer.load_state_dict(checkpoint["optimizer"])
if c.reinit_layers:
if config.reinit_layers:
raise RuntimeError
model.load_state_dict(checkpoint["model"])
except: # pylint: disable=bare-except
print(" > Partial model initialization.")
model_dict = model.state_dict()
model_dict = set_init_dict(model_dict, checkpoint["model"], c)
model_dict = set_init_dict(model_dict, checkpoint["model"], config)
model.load_state_dict(model_dict)
del model_dict
for group in optimizer.param_groups:
group["initial_lr"] = c.lr
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
group["initial_lr"] = config.lr
print(" > Model restored from step %d" % checkpoint["step"],
flush=True)
args.restore_step = checkpoint["step"]
else:
args.restore_step = 0
@ -491,8 +540,10 @@ if __name__ == "__main__":
if num_gpus > 1:
model = DDP_th(model, device_ids=[args.rank])
if c.noam_schedule:
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
if config.noam_schedule:
scheduler = NoamLR(optimizer,
warmup_steps=config.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
@ -503,11 +554,13 @@ if __name__ == "__main__":
best_loss = float("inf")
print(" > Starting with inf best loss.")
else:
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
print(" > Restoring best loss from "
f"{os.path.basename(args.best_path)} ...")
best_loss = torch.load(args.best_path,
map_location="cpu")["model_loss"]
print(f" > Starting with loaded last best loss {best_loss}.")
keep_all_best = c.get("keep_all_best", False)
keep_after = c.get("keep_after", 10000) # void if keep_all_best False
keep_all_best = config.keep_all_best
keep_after = config.keep_after # void if keep_all_best False
# define dataloaders
train_loader = setup_loader(ap, 1, is_val=False, verbose=True)
@ -517,29 +570,32 @@ if __name__ == "__main__":
def set_phase():
"""Set AlignTTS training phase"""
if isinstance(c.phase_start_steps, list):
vals = [i < global_step for i in c.phase_start_steps]
if isinstance(config.phase_start_steps, list):
vals = [i < global_step for i in config.phase_start_steps]
if not True in vals:
phase = 0
else:
phase = (
len(c.phase_start_steps) - [i < global_step for i in c.phase_start_steps][::-1].index(True) - 1
)
len(config.phase_start_steps) -
[i < global_step
for i in config.phase_start_steps][::-1].index(True) - 1)
else:
phase = None
return phase
for epoch in range(0, c.epochs):
for epoch in range(0, config.epochs):
cur_phase = set_phase()
print(f"\n > Current AlignTTS phase: {cur_phase}")
c_logger.print_epoch_start(epoch, c.epochs)
train_avg_loss_dict, global_step = train(
train_loader, model, criterion, optimizer, scheduler, ap, global_step, epoch, cur_phase
)
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch, cur_phase)
c_logger.print_epoch_start(epoch, config.epochs)
train_avg_loss_dict, global_step = train(train_loader, model,
criterion, optimizer,
scheduler, ap, global_step,
epoch, cur_phase)
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap,
global_step, epoch, cur_phase)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict["avg_loss"]
if c.run_eval:
if config.run_eval:
target_loss = eval_avg_loss_dict["avg_loss"]
best_loss = save_best_model(
target_loss,
@ -555,8 +611,10 @@ if __name__ == "__main__":
keep_after=keep_after,
)
args = parse_arguments(sys.argv)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(args, model_class="tts")
if __name__ == "__main__":
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(
sys.argv)
try:
main(args)

View File

@ -0,0 +1,53 @@
from dataclasses import dataclass, field
from .shared_configs import BaseTTSConfig
@dataclass
class AlignTTSConfig(BaseTTSConfig):
"""Defines parameters for AlignTTS model."""
model: str = "align_tts"
# model specific params
positional_encoding: bool = True
hidden_channels_dp: int = 256
hidden_channels: int = 256
encoder_type: str = "fftransformer"
encoder_params: dict = field(
default_factory=lambda: {
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 6,
"dropout_p": 0.1
})
decoder_type: str = "fftransformer"
decoder_params: dict = field(
default_factory=lambda: {
"hidden_channels_ffn": 1024,
"num_heads": 2,
"num_layers": 6,
"dropout_p": 0.1
})
phase_start_steps: list = None
ssim_alpha: float = 1.0
spec_loss_alpha: float = 1.0
dur_loss_alpha: float = 1.0
mdn_alpha: float = 1.0
# multi-speaker settings
use_speaker_embedding: bool = False
use_external_speaker_embedding_file: bool = False
external_speaker_embedding_file: str = False
# optimizer parameters
noam_schedule: bool = False
warmup_steps: int = 4000
lr: float = 1e-4
wd: float = 1e-6
grad_clip: float = 5.0
# overrides
min_seq_len: int = 13
max_seq_len: int = 200
r: int = 1