mirror of https://github.com/coqui-ai/TTS.git
Adapt TTS for TacotronGST and some changes for Audio.py , better config.json naming
This commit is contained in:
parent
d7e0f828cf
commit
7410daceb2
|
@ -40,11 +40,12 @@
|
|||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "bn", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"transition_agent": true, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": true, // enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Apply forward attention mask af inference to prevent bad modes. Try it if your model does not align well.
|
||||
"transition_agent": true, // enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
|
|
|
@ -42,6 +42,7 @@
|
|||
"prenet_type": "original", // ONLY TACOTRON2 - "original" or "bn".
|
||||
"prenet_dropout": true, // ONLY TACOTRON2 - enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // ONLY TACOTRON2 - if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Apply forward attention mask af inference to prevent bad modes. Try it if your model does not align well.
|
||||
"transition_agent": false, // ONLY TACOTRON2 - enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // ONLY TACOTRON2 - enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
|
@ -0,0 +1,81 @@
|
|||
{
|
||||
"run_name": "mozilla-tacotron-gst",
|
||||
"run_description": "",
|
||||
|
||||
"audio":{
|
||||
// Audio processing parameters
|
||||
"num_mels": 80, // size of the mel spec frame.
|
||||
"num_freq": 1025, // number of stft frequency levels. Size of the linear spectogram frame.
|
||||
"sample_rate": 22050, // DATASET-RELATED: wav sample-rate. If different than the original data, it is resampled.
|
||||
"frame_length_ms": 50, // stft window length in ms.
|
||||
"frame_shift_ms": 12.5, // stft window hop-lengh in ms.
|
||||
"preemphasis": 0.98, // pre-emphasis to reduce spec noise and make it more structured. If 0.0, no -pre-emphasis.
|
||||
"min_level_db": -100, // normalization range
|
||||
"ref_level_db": 20, // reference level db, theoretically 20db is the sound of air.
|
||||
"power": 1.5, // value to sharpen wav signals after GL algorithm.
|
||||
"griffin_lim_iters": 60,// #griffin-lim iterations. 30-60 is a good range. Larger the value, slower the generation.
|
||||
// Normalization parameters
|
||||
"signal_norm": true, // normalize the spec values in range [0, 1]
|
||||
"symmetric_norm": false, // move normalization to range [-1, 1]
|
||||
"max_norm": 1, // scale normalization to range [-max_norm, max_norm] or [0, max_norm]
|
||||
"clip_norm": true, // clip normalized values into the range.
|
||||
"mel_fmin": 0.0, // minimum freq level for mel-spec. ~50 for male and ~95 for female voices. Tune for dataset!!
|
||||
"mel_fmax": 8000.0, // maximum freq level for mel-spec. Tune for dataset!!
|
||||
"do_trim_silence": true // enable trimming of slience of audio as you load it. LJspeech (false), TWEB (false), Nancy (true)
|
||||
},
|
||||
|
||||
"distributed":{
|
||||
"backend": "nccl",
|
||||
"url": "tcp:\/\/localhost:54321"
|
||||
},
|
||||
|
||||
"reinit_layers": [],
|
||||
|
||||
"model": "TacotronGST", // one of the model in models/
|
||||
"grad_clip": 1, // upper limit for gradients for clipping.
|
||||
"epochs": 10000, // total number of epochs to train.
|
||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||
"lr_decay": false, // if true, Noam learning rate decaying is applied through training.
|
||||
"warmup_steps": 4000, // Noam decay steps to increase the learning rate from 0 to "lr"
|
||||
"windowing": false, // Enables attention windowing. Used only in eval mode.
|
||||
"memory_size": 5, // ONLY TACOTRON - memory queue size used to queue network predictions to feed autoregressive connection. Useful if r < 5.
|
||||
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
|
||||
"prenet_type": "original", // "original" or "bn".
|
||||
"prenet_dropout": true, // enable/disable dropout at prenet.
|
||||
"use_forward_attn": true, // if it uses forward attention. In general, it aligns faster.
|
||||
"forward_attn_mask": false, // Apply forward attention mask af inference to prevent bad modes. Try it if your model does not align well.
|
||||
"transition_agent": true, // enable/disable transition agent of forward attention.
|
||||
"location_attn": false, // enable_disable location sensitive attention. It is enabled for TACOTRON by default.
|
||||
"loss_masking": true, // enable / disable loss masking against the sequence padding.
|
||||
"enable_eos_bos_chars": false, // enable/disable beginning of sentence and end of sentence chars.
|
||||
"stopnet": true, // Train stopnet predicting the end of synthesis.
|
||||
"separate_stopnet": true, // Train stopnet seperately if 'stopnet==true'. It prevents stopnet loss to influence the rest of the model. It causes a better model, but it trains SLOWER.
|
||||
"tb_model_param_stats": false, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention.
|
||||
"eval_batch_size":16,
|
||||
"r": 5, // Number of frames to predict for step.
|
||||
"wd": 0.000001, // Weight decay weight.
|
||||
"checkpoint": true, // If true, it saves checkpoints per "save_step"
|
||||
"save_step": 1000, // Number of training steps expected to save traning stats and checkpoints.
|
||||
"print_step": 10, // Number of steps to log traning on console.
|
||||
"batch_group_size": 0, //Number of batches to shuffle after bucketing.
|
||||
|
||||
"run_eval": true,
|
||||
"test_delay_epochs": 5, //Until attention is aligned, testing only wastes computation time.
|
||||
"test_sentences_file": null,
|
||||
"data_path": "/media/erogol/data_ssd/Data/Mozilla/", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "metadata_train.txt", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "metadata_val.txt", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "mozilla", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 150, // DATASET-RELATED: maximum text length
|
||||
"output_path": "../keep/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 4, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4, // number of evaluation data loader processes.
|
||||
"phoneme_cache_path": "mozilla_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
|
||||
"use_phonemes": true, // use phonemes instead of raw characters. It is suggested for better pronounciation.
|
||||
"phoneme_language": "en-us", // depending on your target language, pick one from https://github.com/bootphon/phonemizer#languages
|
||||
"text_cleaner": "phoneme_cleaners"
|
||||
}
|
||||
|
28
train.py
28
train.py
|
@ -89,7 +89,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
# setup input data
|
||||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
linear_input = data[2] if c.model == "Tacotron" else None
|
||||
linear_input = data[2] if c.model in ["Tacotron", "TacotronGST"] else None
|
||||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_targets = data[5]
|
||||
|
@ -116,7 +116,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
text_lengths = text_lengths.cuda(non_blocking=True)
|
||||
mel_input = mel_input.cuda(non_blocking=True)
|
||||
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
||||
linear_input = linear_input.cuda(non_blocking=True) if c.model == "Tacotron" else None
|
||||
linear_input = linear_input.cuda(non_blocking=True) if c.model in ["Tacotron", "TacotronGST"] else None
|
||||
stop_targets = stop_targets.cuda(non_blocking=True)
|
||||
|
||||
# forward pass model
|
||||
|
@ -127,13 +127,13 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
|
||||
if c.loss_masking:
|
||||
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
postnet_loss = criterion(postnet_output, linear_input, mel_lengths)
|
||||
else:
|
||||
postnet_loss = criterion(postnet_output, mel_input, mel_lengths)
|
||||
else:
|
||||
decoder_loss = criterion(decoder_output, mel_input)
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
postnet_loss = criterion(postnet_output, linear_input)
|
||||
else:
|
||||
postnet_loss = criterion(postnet_output, mel_input)
|
||||
|
@ -199,7 +199,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
|
||||
# Diagnostic visualizations
|
||||
const_spec = postnet_output[0].data.cpu().numpy()
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if c.model == "Tacotron" else mel_input[0].data.cpu().numpy()
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[0].data.cpu().numpy()
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
|
||||
figures = {
|
||||
|
@ -210,7 +210,7 @@ def train(model, criterion, criterion_st, optimizer, optimizer_st, scheduler,
|
|||
tb_logger.tb_train_figures(current_step, figures)
|
||||
|
||||
# Sample audio
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
train_audio = ap.inv_spectrogram(const_spec.T)
|
||||
else:
|
||||
train_audio = ap.inv_mel_spectrogram(const_spec.T)
|
||||
|
@ -273,7 +273,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
# setup input data
|
||||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
linear_input = data[2] if c.model == "Tacotron" else None
|
||||
linear_input = data[2] if c.model in ["Tacotron", "TacotronGST"] else None
|
||||
mel_input = data[3]
|
||||
mel_lengths = data[4]
|
||||
stop_targets = data[5]
|
||||
|
@ -289,7 +289,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
text_input = text_input.cuda()
|
||||
mel_input = mel_input.cuda()
|
||||
mel_lengths = mel_lengths.cuda()
|
||||
linear_input = linear_input.cuda() if c.model == "Tacotron" else None
|
||||
linear_input = linear_input.cuda() if c.model in ["Tacotron", "TacotronGST"] else None
|
||||
stop_targets = stop_targets.cuda()
|
||||
|
||||
# forward pass
|
||||
|
@ -300,13 +300,13 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
stop_loss = criterion_st(stop_tokens, stop_targets) if c.stopnet else torch.zeros(1)
|
||||
if c.loss_masking:
|
||||
decoder_loss = criterion(decoder_output, mel_input, mel_lengths)
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
postnet_loss = criterion(postnet_output, linear_input, mel_lengths)
|
||||
else:
|
||||
postnet_loss = criterion(postnet_output, mel_input, mel_lengths)
|
||||
else:
|
||||
decoder_loss = criterion(decoder_output, mel_input)
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
postnet_loss = criterion(postnet_output, linear_input)
|
||||
else:
|
||||
postnet_loss = criterion(postnet_output, mel_input)
|
||||
|
@ -339,7 +339,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
# Diagnostic visualizations
|
||||
idx = np.random.randint(mel_input.shape[0])
|
||||
const_spec = postnet_output[idx].data.cpu().numpy()
|
||||
gt_spec = linear_input[idx].data.cpu().numpy() if c.model == "Tacotron" else mel_input[idx].data.cpu().numpy()
|
||||
gt_spec = linear_input[idx].data.cpu().numpy() if c.model in ["Tacotron", "TacotronGST"] else mel_input[idx].data.cpu().numpy()
|
||||
align_img = alignments[idx].data.cpu().numpy()
|
||||
|
||||
eval_figures = {
|
||||
|
@ -350,7 +350,7 @@ def evaluate(model, criterion, criterion_st, ap, current_step, epoch):
|
|||
tb_logger.tb_eval_figures(current_step, eval_figures)
|
||||
|
||||
# Sample audio
|
||||
if c.model == "Tacotron":
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
eval_audio = ap.inv_spectrogram(const_spec.T)
|
||||
else:
|
||||
eval_audio = ap.inv_mel_spectrogram(const_spec.T)
|
||||
|
@ -410,9 +410,9 @@ def main(args):
|
|||
optimizer_st = None
|
||||
|
||||
if c.loss_masking:
|
||||
criterion = L1LossMasked() if c.model == "Tacotron" else MSELossMasked()
|
||||
criterion = L1LossMasked() if c.model in ["Tacotron", "TacotronGST"] else MSELossMasked()
|
||||
else:
|
||||
criterion = nn.L1Loss() if c.model == "Tacotron" else nn.MSELoss()
|
||||
criterion = nn.L1Loss() if c.model in ["Tacotron", "TacotronGST"] else nn.MSELoss()
|
||||
criterion_st = nn.BCEWithLogitsLoss() if c.stopnet else None
|
||||
|
||||
if args.restore_path:
|
||||
|
|
|
@ -10,7 +10,6 @@ from scipy import signal, io
|
|||
|
||||
class AudioProcessor(object):
|
||||
def __init__(self,
|
||||
bits=None,
|
||||
sample_rate=None,
|
||||
num_mels=None,
|
||||
min_level_db=None,
|
||||
|
@ -32,7 +31,6 @@ class AudioProcessor(object):
|
|||
|
||||
print(" > Setting up Audio Processor...")
|
||||
|
||||
self.bits = bits
|
||||
self.sample_rate = sample_rate
|
||||
self.num_mels = num_mels
|
||||
self.min_level_db = min_level_db
|
||||
|
@ -218,25 +216,29 @@ class AudioProcessor(object):
|
|||
return librosa.effects.trim(
|
||||
wav, top_db=40, frame_length=1024, hop_length=256)[0]
|
||||
|
||||
# WaveRNN repo specific functions
|
||||
# def mulaw_encode(self, wav, qc):
|
||||
# mu = qc - 1
|
||||
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
||||
# magnitude = np.log(1 + mu * wav_abs) / np.log(1. + mu)
|
||||
# signal = np.sign(wav) * magnitude
|
||||
# # Quantize signal to the specified number of levels.
|
||||
# signal = (signal + 1) / 2 * mu + 0.5
|
||||
# return signal.astype(np.int32)
|
||||
def mulaw_encode(self, wav, qc):
|
||||
mu = 2 ** qc - 1
|
||||
# wav_abs = np.minimum(np.abs(wav), 1.0)
|
||||
signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1. + mu)
|
||||
# Quantize signal to the specified number of levels.
|
||||
signal = (signal + 1) / 2 * mu + 0.5
|
||||
return np.floor(signal,)
|
||||
|
||||
# def mulaw_decode(self, wav, qc):
|
||||
# """Recovers waveform from quantized values."""
|
||||
# mu = qc - 1
|
||||
# # Map values back to [-1, 1].
|
||||
# casted = wav.astype(np.float32)
|
||||
# signal = 2 * (casted / mu) - 1
|
||||
# # Perform inverse of mu-law transformation.
|
||||
# magnitude = (1 / mu) * ((1 + mu) ** abs(signal) - 1)
|
||||
# return np.sign(signal) * magnitude
|
||||
@staticmethod
|
||||
def mulaw_decode(wav, qc):
|
||||
"""Recovers waveform from quantized values."""
|
||||
# from IPython.core.debugger import set_trace
|
||||
# set_trace()
|
||||
mu = 2 ** qc - 1
|
||||
x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1)
|
||||
return x
|
||||
# mu = 2 ** qc - 1.
|
||||
# # Map values back to [-1, 1].
|
||||
# # casted = wav.astype(np.float32)
|
||||
# # signal = 2 * casted / mu - 1
|
||||
# # Perform inverse of mu-law transformation.
|
||||
# magnitude = (1 / mu) * ((1 + mu) ** abs(wav) - 1)
|
||||
# return np.sign(wav) * magnitude
|
||||
|
||||
def load_wav(self, filename, encode=False):
|
||||
x, sr = sf.read(filename)
|
||||
|
@ -249,8 +251,8 @@ class AudioProcessor(object):
|
|||
def encode_16bits(self, x):
|
||||
return np.clip(x * 2**15, -2**15, 2**15 - 1).astype(np.int16)
|
||||
|
||||
def quantize(self, x):
|
||||
return (x + 1.) * (2**self.bits - 1) / 2
|
||||
def quantize(self, x, bits):
|
||||
return (x + 1.) * (2**bits - 1) / 2
|
||||
|
||||
def dequantize(self, x):
|
||||
return 2 * x / (2**self.bits - 1) - 1
|
||||
def dequantize(self, x, bits):
|
||||
return 2 * x / (2**bits - 1) - 1
|
||||
|
|
|
@ -247,7 +247,7 @@ def setup_model(num_chars, c):
|
|||
print(" > Using model: {}".format(c.model))
|
||||
MyModel = importlib.import_module('models.' + c.model.lower())
|
||||
MyModel = getattr(MyModel, c.model)
|
||||
if c.model.lower() == "tacotron":
|
||||
if c.model.lower() in ["tacotron", "tacotrongst"]:
|
||||
model = MyModel(
|
||||
num_chars=num_chars,
|
||||
r=c.r,
|
||||
|
|
Loading…
Reference in New Issue