mirror of https://github.com/coqui-ai/TTS.git
compute and config update with new attention entropy loss
This commit is contained in:
parent
c1f598b5d0
commit
77f5fd0584
9
.compute
9
.compute
|
@ -4,16 +4,13 @@ yes | apt-get install ffmpeg
|
||||||
yes | apt-get install espeak
|
yes | apt-get install espeak
|
||||||
yes | apt-get install tmux
|
yes | apt-get install tmux
|
||||||
yes | apt-get install zsh
|
yes | apt-get install zsh
|
||||||
# pip3 install https://download.pytorch.org/whl/cu100/torch-1.1.0-cp37-cp37m-linux_x86_64.whl
|
pip3 install https://download.pytorch.org/whl/cu100/torch-1.3.0%2Bcu100-cp36-cp36m-linux_x86_64.whl
|
||||||
# wget https://www.dropbox.com/s/m8waow6b3ydpf6h/MozillaDataset.tar.gz?dl=0 -O /data/rw/home/mozilla.tar
|
|
||||||
wget https://www.dropbox.com/s/wqn5v3wkktw9lmo/install.sh?dl=0 -O install.sh
|
|
||||||
sudo sh install.sh
|
sudo sh install.sh
|
||||||
|
pip install pytorch==1.3.0+cu100
|
||||||
python3 setup.py develop
|
python3 setup.py develop
|
||||||
# cp -R ${USER_DIR}/GermanData ../tmp/
|
|
||||||
# cp -R /data/ro/shared/data/keithito/LJSpeech-1.1/ ../tmp/
|
|
||||||
# python3 distribute.py --config_path config.json --data_path /data/ro/shared/data/keithito/LJSpeech-1.1/
|
# python3 distribute.py --config_path config.json --data_path /data/ro/shared/data/keithito/LJSpeech-1.1/
|
||||||
# cp -R ${USER_DIR}/Mozilla_22050 ../tmp/
|
# cp -R ${USER_DIR}/Mozilla_22050 ../tmp/
|
||||||
# python3 distribute.py --config_path config_tacotron_gst.json --data_path ../tmp/Mozilla_22050/
|
# python3 distribute.py --config_path config_tacotron_gst.json --data_path ../tmp/Mozilla_22050/
|
||||||
# python3 distribute.py --config_path config.json --data_path /data/rw/home/LibriTTS/train-clean-360
|
# python3 distribute.py --config_path config.json --data_path /data/rw/home/LibriTTS/train-clean-360
|
||||||
python3 distribute.py --config_path config.json
|
# python3 distribute.py --config_path config.json
|
||||||
while true; do sleep 1000000; done
|
while true; do sleep 1000000; done
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
{
|
{
|
||||||
"run_name": "ljspeech",
|
"run_name": "ljspeech",
|
||||||
"run_description": "Tacotron2 ljspeech release training",
|
"run_description": "Tacotron ljspeech release training",
|
||||||
|
|
||||||
"audio":{
|
"audio":{
|
||||||
// Audio processing parameters
|
// Audio processing parameters
|
||||||
|
@ -31,7 +31,7 @@
|
||||||
|
|
||||||
"reinit_layers": [],
|
"reinit_layers": [],
|
||||||
|
|
||||||
"model": "Tacotron2", // one of the model in models/
|
"model": "Tacotron", // one of the model in models/
|
||||||
"grad_clip": 1, // upper limit for gradients for clipping.
|
"grad_clip": 1, // upper limit for gradients for clipping.
|
||||||
"epochs": 1000, // total number of epochs to train.
|
"epochs": 1000, // total number of epochs to train.
|
||||||
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
|
||||||
|
|
|
@ -1,3 +1,5 @@
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
from torch import nn
|
from torch import nn
|
||||||
from torch.nn import functional
|
from torch.nn import functional
|
||||||
from TTS.utils.generic_utils import sequence_mask
|
from TTS.utils.generic_utils import sequence_mask
|
||||||
|
@ -53,3 +55,17 @@ class MSELossMasked(nn.Module):
|
||||||
x * mask, target * mask, reduction="sum")
|
x * mask, target * mask, reduction="sum")
|
||||||
loss = loss / mask.sum()
|
loss = loss / mask.sum()
|
||||||
return loss
|
return loss
|
||||||
|
|
||||||
|
|
||||||
|
class AttentionEntropyLoss(nn.Module):
|
||||||
|
def forward(self, align):
|
||||||
|
"""
|
||||||
|
Forces attention to be more decisive by penalizing
|
||||||
|
soft attention weights
|
||||||
|
|
||||||
|
TODO: arguments
|
||||||
|
TODO: unit_test
|
||||||
|
"""
|
||||||
|
entropy = torch.distributions.Categorical(probs=align).entropy()
|
||||||
|
loss = (entropy / np.log(align.shape[1])).mean()
|
||||||
|
return loss
|
||||||
|
|
Loading…
Reference in New Issue