config refactor #5 WIP

This commit is contained in:
Eren Gölge 2021-04-02 14:24:12 +02:00
parent dc50f5f0b0
commit 79d7215142
6 changed files with 236 additions and 244 deletions

View File

@ -8,7 +8,6 @@ import os
import numpy as np
from tqdm import tqdm
from TTS.utils.config_manager import ConfigManager
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_config
@ -16,8 +15,6 @@ from TTS.utils.io import load_config
def main():
"""Run preprocessing process."""
CONFIG = ConfigManager()
parser = argparse.ArgumentParser(
description="Compute mean and variance of spectrogtram features.")
parser.add_argument("config_path", type=str,
@ -26,17 +23,17 @@ def main():
help="save path (directory and filename).")
parser.add_argument("--data_path", type=str, required=False,
help="folder including the target set of wavs overriding dataset config.")
parser = CONFIG.init_argparse(parser)
args = parser.parse_args()
CONFIG.parse_argparse(args)
args, overrides = parser.parse_known_args()
CONFIG = load_config(args.config_path)
CONFIG.parse_args(overrides)
# load config
CONFIG.load_config(args.config_path)
CONFIG.audio_config.signal_norm = False # do not apply earlier normalization
CONFIG.audio_config.stats_path = None # discard pre-defined stats
CONFIG.audio.signal_norm = False # do not apply earlier normalization
CONFIG.audio.stats_path = None # discard pre-defined stats
# load audio processor
ap = AudioProcessor(**CONFIG.audio_config.to_dict())
ap = AudioProcessor(**CONFIG.audio.to_dict())
# load the meta data of target dataset
if args.data_path:
@ -81,15 +78,14 @@ def main():
print(f" > Avg lienar spec scale: {linear_scale.mean()}")
# set default config values for mean-var scaling
CONFIG.audio_config.stats_path = output_file_path
CONFIG.audio_config.signal_norm = True
CONFIG.audio.stats_path = output_file_path
CONFIG.audio.signal_norm = True
# remove redundant values
del CONFIG.audio_config.max_norm
del CONFIG.audio_config.min_level_db
del CONFIG.audio_config.symmetric_norm
del CONFIG.audio_config.clip_norm
breakpoint()
stats['audio_config'] = CONFIG.audio_config.to_dict()
del CONFIG.audio.max_norm
del CONFIG.audio.min_level_db
del CONFIG.audio.symmetric_norm
del CONFIG.audio.clip_norm
stats['audio_config'] = CONFIG.audio.to_dict()
np.save(output_file_path, stats, allow_pickle=True)
print(f" > stats saved to {output_file_path}")

View File

@ -20,9 +20,8 @@ from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.arguments import parse_arguments, process_args
from TTS.utils.arguments import init_training
from TTS.utils.audio import AudioProcessor
from TTS.utils.config_manager import ConfigManager
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
init_distributed, reduce_tensor)
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
@ -41,47 +40,49 @@ use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
if is_val and not c.run_eval:
if is_val and not config.run_eval:
loader = None
else:
if dataset is None:
dataset = MyDataset(
r,
c.text_cleaner,
compute_linear_spec=c.model.lower() == "tacotron",
config.text_cleaner,
compute_linear_spec=config.model.lower() == 'tacotron',
meta_data=meta_data_eval if is_val else meta_data_train,
ap=ap,
tp=c.characters if "characters" in c.keys() else None,
add_blank=c["add_blank"] if "add_blank" in c.keys() else False,
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
min_seq_len=c.min_seq_len,
max_seq_len=c.max_seq_len,
phoneme_cache_path=c.phoneme_cache_path,
use_phonemes=c.use_phonemes,
phoneme_language=c.phoneme_language,
enable_eos_bos=c.enable_eos_bos_chars,
tp=config.characters,
add_blank=config['add_blank'],
batch_group_size=0 if is_val else config.batch_group_size *
config.batch_size,
min_seq_len=config.min_seq_len,
max_seq_len=config.max_seq_len,
phoneme_cache_path=config.phoneme_cache_path,
use_phonemes=config.use_phonemes,
phoneme_language=config.phoneme_language,
enable_eos_bos=config.enable_eos_bos_chars,
verbose=verbose,
speaker_mapping=(
speaker_mapping if (c.use_speaker_embedding and c.use_external_speaker_embedding_file) else None
),
)
speaker_mapping=(speaker_mapping if (
config.use_speaker_embedding
and config.use_external_speaker_embedding_file
) else None)
)
if c.use_phonemes and c.compute_input_seq_cache:
if config.use_phonemes and config.compute_input_seq_cache:
# precompute phonemes to have a better estimate of sequence lengths.
dataset.compute_input_seq(c.num_loader_workers)
dataset.compute_input_seq(config.num_loader_workers)
dataset.sort_items()
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
loader = DataLoader(
dataset,
batch_size=c.eval_batch_size if is_val else c.batch_size,
batch_size=config.eval_batch_size if is_val else config.batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
drop_last=False,
sampler=sampler,
num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers,
pin_memory=False,
)
num_workers=config.num_val_loader_workers
if is_val else config.num_loader_workers,
pin_memory=False)
return loader
@ -90,15 +91,15 @@ def format_data(data):
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
linear_input = data[3] if c.model.lower() in ["tacotron"] else None
linear_input = data[3] if config.model in ["Tacotron"] else None
mel_input = data[4]
mel_lengths = data[5]
stop_targets = data[6]
max_text_length = torch.max(text_lengths.float())
max_spec_length = torch.max(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
if config.use_speaker_embedding:
if config.use_external_speaker_embedding_file:
speaker_embeddings = data[8]
speaker_ids = None
else:
@ -110,8 +111,10 @@ def format_data(data):
speaker_ids = None
# set stop targets view, we predict a single stop token per iteration.
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
stop_targets = stop_targets.view(text_input.shape[0],
stop_targets.size(1) // config.r, -1)
stop_targets = (stop_targets.sum(2) >
0.0).unsqueeze(2).float().squeeze(2)
# dispatch data to GPU
if use_cuda:
@ -119,7 +122,7 @@ def format_data(data):
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
linear_input = linear_input.cuda(non_blocking=True) if c.model.lower() in ["tacotron"] else None
linear_input = linear_input.cuda(non_blocking=True) if config.model.lower() in ["tacotron"] else None
stop_targets = stop_targets.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
@ -145,9 +148,10 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
epoch_time = 0
keep_avg = KeepAverage()
if use_cuda:
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
batch_n_iter = int(
len(data_loader.dataset) / (config.batch_size * num_gpus))
else:
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
end_time = time.time()
c_logger.print_train_start()
for num_iter, data in enumerate(data_loader):
@ -171,31 +175,18 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
global_step += 1
# setup lr
if c.noam_schedule:
if config.noam_schedule:
scheduler.step()
optimizer.zero_grad()
if optimizer_st:
optimizer_st.zero_grad()
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
(
decoder_output,
postnet_output,
alignments,
stop_tokens,
decoder_backward_output,
alignments_backward,
) = model(
text_input,
text_lengths,
mel_input,
mel_lengths,
speaker_ids=speaker_ids,
speaker_embeddings=speaker_embeddings,
)
if config.bidirectional_decoder or config.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input,
@ -237,18 +228,18 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
raise RuntimeError(f"Detected NaN loss at step {global_step}.")
# optimizer step
if c.mixed_precision:
if config.mixed_precision:
# model optimizer step in mixed precision mode
scaler.scale(loss_dict["loss"]).backward()
scaler.unscale_(optimizer)
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
scaler.step(optimizer)
scaler.update()
# stopnet optimizer step
if c.separate_stopnet:
scaler_st.scale(loss_dict["stopnet_loss"]).backward()
if config.separate_stopnet:
scaler_st.scale(loss_dict['stopnet_loss']).backward()
scaler.unscale_(optimizer_st)
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
@ -260,12 +251,12 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
# main model optimizer step
loss_dict["loss"].backward()
optimizer, current_lr = adam_weight_decay(optimizer)
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
optimizer.step()
# stopnet optimizer step
if c.separate_stopnet:
loss_dict["stopnet_loss"].backward()
if config.separate_stopnet:
loss_dict['stopnet_loss'].backward()
optimizer_st, _ = adam_weight_decay(optimizer_st)
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
optimizer_st.step()
@ -281,12 +272,10 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
# aggregate losses from processes
if num_gpus > 1:
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
loss_dict["stopnet_loss"] = (
reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus) if c.stopnet else loss_dict["stopnet_loss"]
)
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if config.stopnet else loss_dict['stopnet_loss']
# detach loss values
loss_dict_new = dict()
@ -306,7 +295,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
keep_avg.update_values(update_train_values)
# print training progress
if global_step % c.print_step == 0:
if global_step % config.print_step == 0:
log_dict = {
"max_spec_length": [max_spec_length, 1], # value, precision
"max_text_length": [max_text_length, 1],
@ -319,7 +308,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
if args.rank == 0:
# Plot Training Iter Stats
# reduce TB load
if global_step % c.tb_plot_step == 0:
if global_step % config.tb_plot_step == 0:
iter_stats = {
"lr": current_lr,
"grad_norm": grad_norm,
@ -329,29 +318,20 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
iter_stats.update(loss_dict)
tb_logger.tb_train_iter_stats(global_step, iter_stats)
if global_step % c.save_step == 0:
if c.checkpoint:
if global_step % config.save_step == 0:
if config.checkpoint:
# save model
save_checkpoint(
model,
optimizer,
global_step,
epoch,
model.decoder.r,
OUT_PATH,
optimizer_st=optimizer_st,
model_loss=loss_dict["postnet_loss"],
characters=model_characters,
scaler=scaler.state_dict() if c.mixed_precision else None,
)
save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
optimizer_st=optimizer_st,
model_loss=loss_dict['postnet_loss'],
characters=model_characters,
scaler=scaler.state_dict() if config.mixed_precision else None)
# Diagnostic visualizations
const_spec = postnet_output[0].data.cpu().numpy()
gt_spec = (
linear_input[0].data.cpu().numpy()
if c.model in ["Tacotron", "TacotronGST"]
else mel_input[0].data.cpu().numpy()
)
gt_spec = linear_input[0].data.cpu().numpy() if config.model in [
"Tacotron", "TacotronGST"
] else mel_input[0].data.cpu().numpy()
align_img = alignments[0].data.cpu().numpy()
figures = {
@ -360,19 +340,19 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
"alignment": plot_alignment(align_img, output_fig=False),
}
if c.bidirectional_decoder or c.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(
alignments_backward[0].data.cpu().numpy(), output_fig=False
)
if config.bidirectional_decoder or config.double_decoder_consistency:
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
tb_logger.tb_train_figures(global_step, figures)
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_spec.T)
if config.model in ["Tacotron", "TacotronGST"]:
train_audio = ap.inv_spectrogram(const_speconfig.T)
else:
train_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, c.audio["sample_rate"])
train_audio = ap.inv_melspectrogram(const_speconfig.T)
tb_logger.tb_train_audios(global_step,
{'TrainAudio': train_audio},
config.audio["sample_rate"])
end_time = time.time()
# print epoch stats
@ -383,7 +363,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
epoch_stats = {"epoch_time": epoch_time}
epoch_stats.update(keep_avg.avg_values)
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
if c.tb_model_param_stats:
if config.tb_model_param_stats:
tb_logger.tb_model_weights(model, global_step)
return keep_avg.avg_values, global_step
@ -414,17 +394,9 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
assert mel_input.shape[1] % model.decoder.r == 0
# forward pass model
if c.bidirectional_decoder or c.double_decoder_consistency:
(
decoder_output,
postnet_output,
alignments,
stop_tokens,
decoder_backward_output,
alignments_backward,
) = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
)
if config.bidirectional_decoder or config.double_decoder_consistency:
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
else:
decoder_output, postnet_output, alignments, stop_tokens = model(
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
@ -466,10 +438,10 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
# aggregate losses from processes
if num_gpus > 1:
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
if c.stopnet:
loss_dict["stopnet_loss"] = reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus)
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
if config.stopnet:
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
# detach loss values
loss_dict_new = dict()
@ -486,18 +458,16 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
update_train_values["avg_" + key] = value
keep_avg.update_values(update_train_values)
if c.print_eval:
if config.print_eval:
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
if args.rank == 0:
# Diagnostic visualizations
idx = np.random.randint(mel_input.shape[0])
const_spec = postnet_output[idx].data.cpu().numpy()
gt_spec = (
linear_input[idx].data.cpu().numpy()
if c.model in ["Tacotron", "TacotronGST"]
else mel_input[idx].data.cpu().numpy()
)
gt_spec = linear_input[idx].data.cpu().numpy() if config.model in [
"Tacotron", "TacotronGST"
] else mel_input[idx].data.cpu().numpy()
align_img = alignments[idx].data.cpu().numpy()
eval_figures = {
@ -507,22 +477,23 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
}
# Sample audio
if c.model in ["Tacotron", "TacotronGST"]:
eval_audio = ap.inv_spectrogram(const_spec.T)
if config.model in ["Tacotron", "TacotronGST"]:
eval_audio = ap.inv_spectrogram(const_speconfig.T)
else:
eval_audio = ap.inv_melspectrogram(const_spec.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
eval_audio = ap.inv_melspectrogram(const_speconfig.T)
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
config.audio["sample_rate"])
# Plot Validation Stats
if c.bidirectional_decoder or c.double_decoder_consistency:
if config.bidirectional_decoder or config.double_decoder_consistency:
align_b_img = alignments_backward[idx].data.cpu().numpy()
eval_figures["alignment2"] = plot_alignment(align_b_img, output_fig=False)
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
tb_logger.tb_eval_figures(global_step, eval_figures)
if args.rank == 0 and epoch > c.test_delay_epochs:
if c.test_sentences_file is None:
if args.rank == 0 and epoch > config.test_delay_epochs:
if config.test_sentences_file is None:
test_sentences = [
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
"Be a voice, not an echo.",
@ -531,40 +502,36 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
"Prior to November 22, 1963.",
]
else:
with open(c.test_sentences_file, "r") as f:
with open(config.test_sentences_file, "r") as f:
test_sentences = [s.strip() for s in f.readlines()]
# test sentences
test_audios = {}
test_figures = {}
print(" | > Synthesizing test sentences")
speaker_id = 0 if c.use_speaker_embedding else None
speaker_embedding = (
speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]]["embedding"]
if c.use_external_speaker_embedding_file and c.use_speaker_embedding
else None
)
style_wav = c.get("gst_style_input")
if style_wav is None and c.use_gst:
speaker_id = 0 if config.use_speaker_embedding else None
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if config.use_external_speaker_embedding_file and config.use_speaker_embedding else None
style_wav = config.get("gst_style_input")
if style_wav is None and config.use_gst:
# inicialize GST with zero dict.
style_wav = {}
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
for i in range(c.gst['gst_num_style_tokens']):
for i in range(config.gst['gst_num_style_tokens']):
style_wav[str(i)] = 0
style_wav = c.get("gst_style_input", style_wav)
style_wav = config.get("gst_style_input")
for idx, test_sentence in enumerate(test_sentences):
try:
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
model,
test_sentence,
c,
config,
use_cuda,
ap,
speaker_id=speaker_id,
speaker_embedding=speaker_embedding,
style_wav=style_wav,
truncated=False,
enable_eos_bos_chars=c.enable_eos_bos_chars, # pylint: disable=unused-argument
enable_eos_bos_chars=config.enable_eos_bos_chars, #pylint: disable=unused-argument
use_griffin_lim=True,
do_trim_silence=False,
)
@ -579,7 +546,8 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
except: # pylint: disable=bare-except
print(" !! Error creating Test Sentence -", idx)
traceback.print_exc()
tb_logger.tb_test_audios(global_step, test_audios, c.audio["sample_rate"])
tb_logger.tb_test_audios(global_step, test_audios,
config.audio['sample_rate'])
tb_logger.tb_test_figures(global_step, test_figures)
return keep_avg.avg_values
@ -588,45 +556,48 @@ def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, speaker_mapping, symbols, phonemes, model_characters
# Audio processor
ap = AudioProcessor(**c.audio)
ap = AudioProcessor(**config.audio.to_dict())
# setup custom characters if set in config file.
if "characters" in c.keys():
symbols, phonemes = make_symbols(**c.characters)
if config.characters is not None:
symbols, phonemes = make_symbols(**config.characters.to_dict())
# DISTRUBUTED
if num_gpus > 1:
init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"])
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
model_characters = phonemes if c.use_phonemes else symbols
init_distributed(args.rank, num_gpus, args.group_id,
config.distributed["backend"], config.distributed["url"])
num_chars = len(phonemes) if config.use_phonemes else len(symbols)
model_characters = phonemes if config.use_phonemes else symbols
# load data instances
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
meta_data_train, meta_data_eval = load_meta_data(config.datasets)
# set the portion of the data used for training
if "train_portion" in c.keys():
meta_data_train = meta_data_train[: int(len(meta_data_train) * c.train_portion)]
if "eval_portion" in c.keys():
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * c.eval_portion)]
if config.has('train_portion'):
meta_data_train = meta_data_train[:int(len(meta_data_train) * config.train_portion)]
if config.has('eval_portion'):
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * config.eval_portion)]
# parse speakers
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(config, args, meta_data_train, OUT_PATH)
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
model = setup_model(num_chars, num_speakers, config, speaker_embedding_dim)
# scalers for mixed precision training
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None
scaler = torch.cuda.amp.GradScaler() if config.mixed_precision else None
scaler_st = torch.cuda.amp.GradScaler() if config.mixed_precision and config.separate_stopnet else None
params = set_weight_decay(model, c.wd)
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
if c.stopnet and c.separate_stopnet:
optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
params = set_weight_decay(model, config.wd)
optimizer = RAdam(params, lr=config.lr, weight_decay=0)
if config.stopnet and config.separate_stopnet:
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
lr=config.lr,
weight_decay=0)
else:
optimizer_st = None
# setup criterion
criterion = TacotronLoss(c, stopnet_pos_weight=c.stopnet_pos_weight, ga_sigma=0.4)
criterion = TacotronLoss(config, stopnet_pos_weight=config.stopnet_pos_weight, ga_sigma=0.4)
if args.restore_path:
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
checkpoint = torch.load(args.restore_path, map_location="cpu")
@ -635,11 +606,11 @@ def main(args): # pylint: disable=redefined-outer-name
model.load_state_dict(checkpoint["model"])
# optimizer restore
print(" > Restoring Optimizer...")
optimizer.load_state_dict(checkpoint["optimizer"])
if "scaler" in checkpoint and c.mixed_precision:
optimizer.load_state_dict(checkpoint['optimizer'])
if "scaler" in checkpoint and config.mixed_precision:
print(" > Restoring AMP Scaler...")
scaler.load_state_dict(checkpoint["scaler"])
if c.reinit_layers:
if config.reinit_layers:
raise RuntimeError
except (KeyError, RuntimeError):
print(" > Partial model initialization...")
@ -651,9 +622,10 @@ def main(args): # pylint: disable=redefined-outer-name
del model_dict
for group in optimizer.param_groups:
group["lr"] = c.lr
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
args.restore_step = checkpoint["step"]
group['lr'] = config.lr
print(" > Model restored from step %d" % checkpoint['step'],
flush=True)
args.restore_step = checkpoint['step']
else:
args.restore_step = 0
@ -665,8 +637,10 @@ def main(args): # pylint: disable=redefined-outer-name
if num_gpus > 1:
model = apply_gradient_allreduce(model)
if c.noam_schedule:
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
if config.noam_schedule:
scheduler = NoamLR(optimizer,
warmup_steps=config.warmup_steps,
last_epoch=args.restore_step - 1)
else:
scheduler = None
@ -680,22 +654,22 @@ def main(args): # pylint: disable=redefined-outer-name
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
print(f" > Starting with loaded last best loss {best_loss}.")
keep_all_best = c.get("keep_all_best", False)
keep_after = c.get("keep_after", 10000) # void if keep_all_best False
keep_all_best = config.keep_all_best
keep_after = config.keep_after # void if keep_all_best False
# define data loaders
train_loader = setup_loader(ap, model.decoder.r, is_val=False, verbose=True)
eval_loader = setup_loader(ap, model.decoder.r, is_val=True)
global_step = args.restore_step
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
for epoch in range(0, config.epochs):
c_logger.print_epoch_start(epoch, config.epochs)
# set gradual training
if c.gradual_training is not None:
r, c.batch_size = gradual_training_scheduler(global_step, c)
c.r = r
if config.gradual_training is not None:
r, config.batch_size = gradual_training_scheduler(global_step, c)
config.r = r
model.decoder.set_r(r)
if c.bidirectional_decoder:
if config.bidirectional_decoder:
model.decoder_backward.set_r(r)
train_loader.dataset.outputs_per_step = r
eval_loader.dataset.outputs_per_step = r
@ -719,9 +693,9 @@ def main(args): # pylint: disable=redefined-outer-name
# eval one epoch
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict["avg_postnet_loss"]
if c.run_eval:
target_loss = eval_avg_loss_dict["avg_postnet_loss"]
target_loss = train_avg_loss_dict['avg_postnet_loss']
if config.run_eval:
target_loss = eval_avg_loss_dict['avg_postnet_loss']
best_loss = save_best_model(
target_loss,
best_loss,
@ -729,31 +703,26 @@ def main(args): # pylint: disable=redefined-outer-name
optimizer,
global_step,
epoch,
c.r,
config.r,
OUT_PATH,
model_characters,
keep_all_best=keep_all_best,
keep_after=keep_after,
scaler=scaler.state_dict() if c.mixed_precision else None,
scaler=scaler.state_dict() if config.mixed_precision else None
)
if __name__ == "__main__":
args = parse_arguments(sys.argv)
c = TacotronConfig()
args = c.init_argparse(args)
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
args, c, model_type='tacotron')
if __name__ == '__main__':
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
try:
main(args)
except KeyboardInterrupt:
remove_experiment_folder(OUT_PATH)
# remove_experiment_folder(OUT_PATH)
try:
sys.exit(0)
except SystemExit:
os._exit(0) # pylint: disable=protected-access
except Exception: # pylint: disable=broad-except
remove_experiment_folder(OUT_PATH)
# remove_experiment_folder(OUT_PATH)
traceback.print_exc()
sys.exit(1)

View File

@ -37,8 +37,8 @@ def load_meta_data(datasets, eval_split=True):
meta_data_eval_all += meta_data_eval
meta_data_train_all += meta_data_train
# load attention masks for duration predictor training
if "meta_file_attn_mask" in dataset and dataset["meta_file_attn_mask"] is not None:
meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"]))
if dataset.meta_file_attn_mask is not None:
meta_data = dict(load_attention_mask_meta_data(dataset['meta_file_attn_mask']))
for idx, ins in enumerate(meta_data_train_all):
attn_file = meta_data[ins[1]].strip()
meta_data_train_all[idx].append(attn_file)

View File

@ -38,7 +38,7 @@ def sequence_mask(sequence_length, max_len=None):
def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
print(" > Using model: {}".format(c.model))
find_module("TTS.tts.models", c.model.lower())
MyModel = find_module("TTS.tts.models", c.model.lower())
if c.model.lower() in "tacotron":
model = MyModel(
num_chars=num_chars + getattr(c, "add_blank", False),
@ -76,11 +76,11 @@ def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
r=c.r,
postnet_output_dim=c.audio["num_mels"],
decoder_output_dim=c.audio["num_mels"],
gst=c.use_gst,
gst_embedding_dim=c.gst["gst_embedding_dim"],
gst_num_heads=c.gst["gst_num_heads"],
gst_style_tokens=c.gst["gst_style_tokens"],
gst_use_speaker_embedding=c.gst["gst_use_speaker_embedding"],
gst=c.gst is not None,
gst_embedding_dim=None if c.gst is None else c.gst['gst_embedding_dim'],
gst_num_heads=None if c.gst is None else c.gst['gst_num_heads'],
gst_num_style_tokens=None if c.gst is None else c.gst['gst_num_style_tokens'],
gst_use_speaker_embedding=None if c.gst is None else c.gst['gst_use_speaker_embedding'],
attn_type=c.attention_type,
attn_win=c.windowing,
attn_norm=c.attention_norm,

View File

@ -6,16 +6,17 @@ import argparse
import glob
import json
import os
import sys
import re
from TTS.tts.utils.text.symbols import parse_symbols
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.generic_utils import create_experiment_folder, get_git_branch
from TTS.utils.io import copy_model_files
from TTS.utils.io import copy_model_files, load_config
from TTS.utils.tensorboard_logger import TensorboardLogger
def parse_arguments(argv):
def init_arguments(argv):
"""Parse command line arguments of training scripts.
Args:
@ -45,16 +46,26 @@ def parse_arguments(argv):
"Best model file to be used for extracting best loss."
"If not specified, the latest best model in continue path is used"
),
default="",
)
default="")
parser.add_argument("--config_path",
type=str,
help="Path to config file for training.",
required="--continue_path" not in argv)
parser.add_argument("--debug",
type=bool,
default=False,
help="Do not verify commit integrity to run training.")
parser.add_argument(
"--config_path", type=str, help="Path to config file for training.", required="--continue_path" not in argv
)
parser.add_argument("--debug", type=bool, default=False, help="Do not verify commit integrity to run training.")
parser.add_argument("--rank", type=int, default=0, help="DISTRIBUTED: process rank for distributed training.")
parser.add_argument("--group_id", type=str, default="", help="DISTRIBUTED: process group id.")
"--rank",
type=int,
default=0,
help="DISTRIBUTED: process rank for distributed training.")
parser.add_argument("--group_id",
type=str,
default="",
help="DISTRIBUTED: process group id.")
return parser.parse_args()
return parser
def get_last_checkpoint(path):
@ -115,7 +126,7 @@ def get_last_checkpoint(path):
return last_models["checkpoint"], last_models["best_model"]
def process_args(args, config, tb_prefix):
def process_args(args):
"""Process parsed comand line arguments.
Args:
@ -130,21 +141,27 @@ def process_args(args, config, tb_prefix):
tb_logger (TTS.utils.tensorboard.TensorboardLogger): Class that does
the TensorBoard loggind.
"""
if isinstance(args, tuple):
args, coqpit_overrides = args
if args.continue_path:
# continue a previous training from its output folder
args.output_path = args.continue_path
experiment_path = args.continue_path
args.config_path = os.path.join(args.continue_path, "config.json")
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
if not args.best_path:
args.best_path = best_model
# setup output paths and read configs
config.load_json(args.config_path)
config = load_config(args.config_path)
# override values from command-line args
config.parse_args(coqpit_overrides)
if config.mixed_precision:
print(" > Mixed precision mode is ON")
if not os.path.exists(config.output_path):
out_path = create_experiment_folder(config.output_path, config.run_name,
args.debug)
audio_path = os.path.join(out_path, "test_audios")
experiment_path = create_experiment_folder(config.output_path,
config.run_name, args.debug)
else:
experiment_path = config.output_path
audio_path = os.path.join(experiment_path, "test_audios")
# setup rank 0 process in distributed training
if args.rank == 0:
os.makedirs(audio_path, exist_ok=True)
@ -157,13 +174,22 @@ def process_args(args, config, tb_prefix):
# compatibility.
if config.has('characters_config'):
used_characters = parse_symbols()
new_fields["characters"] = used_characters
copy_model_files(c, args.config_path, out_path, new_fields)
new_fields['characters'] = used_characters
copy_model_files(config, args.config_path, experiment_path, new_fields)
os.chmod(audio_path, 0o775)
os.chmod(out_path, 0o775)
log_path = out_path
tb_logger = TensorboardLogger(log_path, model_name=tb_prefix)
os.chmod(experiment_path, 0o775)
tb_logger = TensorboardLogger(experiment_path,
model_name=config.model)
# write model desc to tensorboard
tb_logger.tb_add_text("model-description", config["run_description"], 0)
tb_logger.tb_add_text("model-description", config["run_description"],
0)
c_logger = ConsoleLogger()
return c, out_path, audio_path, c_logger, tb_logger
return config, experiment_path, audio_path, c_logger, tb_logger
def init_training(argv):
"""Initialization of a training run."""
parser = init_arguments(argv)
args = parser.parse_known_args()
config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(args)
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger

View File

@ -3,9 +3,11 @@ import os
import pickle as pickle_tts
import re
from shutil import copyfile
from TTS.utils.generic_utils import find_module
import yaml
from TTS.utils.generic_utils import find_module
from .generic_utils import find_module
class RenamingUnpickler(pickle_tts.Unpickler):
@ -35,26 +37,25 @@ def read_json_with_comments(json_path):
data = json.loads(input_str)
return data
def load_config(config_path: str) -> AttrDict:
"""DEPRECATED: Load config files and discard comments
Args:
config_path (str): path to config file.
"""
config_dict = AttrDict()
def load_config(config_path: str) -> None:
config_dict = {}
ext = os.path.splitext(config_path)[1]
if ext in (".yml", ".yaml"):
with open(config_path, "r", encoding="utf-8") as f:
data = yaml.safe_load(f)
else:
elif ext == '.json':
with open(config_path, "r", encoding="utf-8") as f:
input_str = f.read()
data = json.loads(input_str)
else:
raise TypeError(f' [!] Unknown config file type {ext}')
config_dict.update(data)
config_class = find_module('TTS.tts.configs', config_dict.model.lower()+'_config')
config_class = find_module('TTS.tts.configs', config_dict['model'].lower()+'_config')
config = config_class()
config.from_dict(config_dict)
return
return config
def copy_model_files(c, config_file, out_path, new_fields):