mirror of https://github.com/coqui-ai/TTS.git
config refactor #5 WIP
This commit is contained in:
parent
dc50f5f0b0
commit
79d7215142
|
@ -8,7 +8,6 @@ import os
|
|||
import numpy as np
|
||||
from tqdm import tqdm
|
||||
|
||||
from TTS.utils.config_manager import ConfigManager
|
||||
from TTS.tts.datasets.preprocess import load_meta_data
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.io import load_config
|
||||
|
@ -16,8 +15,6 @@ from TTS.utils.io import load_config
|
|||
|
||||
def main():
|
||||
"""Run preprocessing process."""
|
||||
CONFIG = ConfigManager()
|
||||
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Compute mean and variance of spectrogtram features.")
|
||||
parser.add_argument("config_path", type=str,
|
||||
|
@ -26,17 +23,17 @@ def main():
|
|||
help="save path (directory and filename).")
|
||||
parser.add_argument("--data_path", type=str, required=False,
|
||||
help="folder including the target set of wavs overriding dataset config.")
|
||||
parser = CONFIG.init_argparse(parser)
|
||||
args = parser.parse_args()
|
||||
CONFIG.parse_argparse(args)
|
||||
args, overrides = parser.parse_known_args()
|
||||
|
||||
CONFIG = load_config(args.config_path)
|
||||
CONFIG.parse_args(overrides)
|
||||
|
||||
# load config
|
||||
CONFIG.load_config(args.config_path)
|
||||
CONFIG.audio_config.signal_norm = False # do not apply earlier normalization
|
||||
CONFIG.audio_config.stats_path = None # discard pre-defined stats
|
||||
CONFIG.audio.signal_norm = False # do not apply earlier normalization
|
||||
CONFIG.audio.stats_path = None # discard pre-defined stats
|
||||
|
||||
# load audio processor
|
||||
ap = AudioProcessor(**CONFIG.audio_config.to_dict())
|
||||
ap = AudioProcessor(**CONFIG.audio.to_dict())
|
||||
|
||||
# load the meta data of target dataset
|
||||
if args.data_path:
|
||||
|
@ -81,15 +78,14 @@ def main():
|
|||
print(f" > Avg lienar spec scale: {linear_scale.mean()}")
|
||||
|
||||
# set default config values for mean-var scaling
|
||||
CONFIG.audio_config.stats_path = output_file_path
|
||||
CONFIG.audio_config.signal_norm = True
|
||||
CONFIG.audio.stats_path = output_file_path
|
||||
CONFIG.audio.signal_norm = True
|
||||
# remove redundant values
|
||||
del CONFIG.audio_config.max_norm
|
||||
del CONFIG.audio_config.min_level_db
|
||||
del CONFIG.audio_config.symmetric_norm
|
||||
del CONFIG.audio_config.clip_norm
|
||||
breakpoint()
|
||||
stats['audio_config'] = CONFIG.audio_config.to_dict()
|
||||
del CONFIG.audio.max_norm
|
||||
del CONFIG.audio.min_level_db
|
||||
del CONFIG.audio.symmetric_norm
|
||||
del CONFIG.audio.clip_norm
|
||||
stats['audio_config'] = CONFIG.audio.to_dict()
|
||||
np.save(output_file_path, stats, allow_pickle=True)
|
||||
print(f" > stats saved to {output_file_path}")
|
||||
|
||||
|
|
|
@ -20,9 +20,8 @@ from TTS.tts.utils.speakers import parse_speakers
|
|||
from TTS.tts.utils.synthesis import synthesis
|
||||
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
|
||||
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
|
||||
from TTS.utils.arguments import parse_arguments, process_args
|
||||
from TTS.utils.arguments import init_training
|
||||
from TTS.utils.audio import AudioProcessor
|
||||
from TTS.utils.config_manager import ConfigManager
|
||||
from TTS.utils.distribute import (DistributedSampler, apply_gradient_allreduce,
|
||||
init_distributed, reduce_tensor)
|
||||
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
|
||||
|
@ -41,47 +40,49 @@ use_cuda, num_gpus = setup_torch_training_env(True, False)
|
|||
|
||||
|
||||
def setup_loader(ap, r, is_val=False, verbose=False, dataset=None):
|
||||
if is_val and not c.run_eval:
|
||||
if is_val and not config.run_eval:
|
||||
loader = None
|
||||
else:
|
||||
if dataset is None:
|
||||
dataset = MyDataset(
|
||||
r,
|
||||
c.text_cleaner,
|
||||
compute_linear_spec=c.model.lower() == "tacotron",
|
||||
config.text_cleaner,
|
||||
compute_linear_spec=config.model.lower() == 'tacotron',
|
||||
meta_data=meta_data_eval if is_val else meta_data_train,
|
||||
ap=ap,
|
||||
tp=c.characters if "characters" in c.keys() else None,
|
||||
add_blank=c["add_blank"] if "add_blank" in c.keys() else False,
|
||||
batch_group_size=0 if is_val else c.batch_group_size * c.batch_size,
|
||||
min_seq_len=c.min_seq_len,
|
||||
max_seq_len=c.max_seq_len,
|
||||
phoneme_cache_path=c.phoneme_cache_path,
|
||||
use_phonemes=c.use_phonemes,
|
||||
phoneme_language=c.phoneme_language,
|
||||
enable_eos_bos=c.enable_eos_bos_chars,
|
||||
tp=config.characters,
|
||||
add_blank=config['add_blank'],
|
||||
batch_group_size=0 if is_val else config.batch_group_size *
|
||||
config.batch_size,
|
||||
min_seq_len=config.min_seq_len,
|
||||
max_seq_len=config.max_seq_len,
|
||||
phoneme_cache_path=config.phoneme_cache_path,
|
||||
use_phonemes=config.use_phonemes,
|
||||
phoneme_language=config.phoneme_language,
|
||||
enable_eos_bos=config.enable_eos_bos_chars,
|
||||
verbose=verbose,
|
||||
speaker_mapping=(
|
||||
speaker_mapping if (c.use_speaker_embedding and c.use_external_speaker_embedding_file) else None
|
||||
),
|
||||
)
|
||||
speaker_mapping=(speaker_mapping if (
|
||||
config.use_speaker_embedding
|
||||
and config.use_external_speaker_embedding_file
|
||||
) else None)
|
||||
)
|
||||
|
||||
if c.use_phonemes and c.compute_input_seq_cache:
|
||||
if config.use_phonemes and config.compute_input_seq_cache:
|
||||
# precompute phonemes to have a better estimate of sequence lengths.
|
||||
dataset.compute_input_seq(c.num_loader_workers)
|
||||
dataset.compute_input_seq(config.num_loader_workers)
|
||||
dataset.sort_items()
|
||||
|
||||
sampler = DistributedSampler(dataset) if num_gpus > 1 else None
|
||||
loader = DataLoader(
|
||||
dataset,
|
||||
batch_size=c.eval_batch_size if is_val else c.batch_size,
|
||||
batch_size=config.eval_batch_size if is_val else config.batch_size,
|
||||
shuffle=False,
|
||||
collate_fn=dataset.collate_fn,
|
||||
drop_last=False,
|
||||
sampler=sampler,
|
||||
num_workers=c.num_val_loader_workers if is_val else c.num_loader_workers,
|
||||
pin_memory=False,
|
||||
)
|
||||
num_workers=config.num_val_loader_workers
|
||||
if is_val else config.num_loader_workers,
|
||||
pin_memory=False)
|
||||
return loader
|
||||
|
||||
|
||||
|
@ -90,15 +91,15 @@ def format_data(data):
|
|||
text_input = data[0]
|
||||
text_lengths = data[1]
|
||||
speaker_names = data[2]
|
||||
linear_input = data[3] if c.model.lower() in ["tacotron"] else None
|
||||
linear_input = data[3] if config.model in ["Tacotron"] else None
|
||||
mel_input = data[4]
|
||||
mel_lengths = data[5]
|
||||
stop_targets = data[6]
|
||||
max_text_length = torch.max(text_lengths.float())
|
||||
max_spec_length = torch.max(mel_lengths.float())
|
||||
|
||||
if c.use_speaker_embedding:
|
||||
if c.use_external_speaker_embedding_file:
|
||||
if config.use_speaker_embedding:
|
||||
if config.use_external_speaker_embedding_file:
|
||||
speaker_embeddings = data[8]
|
||||
speaker_ids = None
|
||||
else:
|
||||
|
@ -110,8 +111,10 @@ def format_data(data):
|
|||
speaker_ids = None
|
||||
|
||||
# set stop targets view, we predict a single stop token per iteration.
|
||||
stop_targets = stop_targets.view(text_input.shape[0], stop_targets.size(1) // c.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) > 0.0).unsqueeze(2).float().squeeze(2)
|
||||
stop_targets = stop_targets.view(text_input.shape[0],
|
||||
stop_targets.size(1) // config.r, -1)
|
||||
stop_targets = (stop_targets.sum(2) >
|
||||
0.0).unsqueeze(2).float().squeeze(2)
|
||||
|
||||
# dispatch data to GPU
|
||||
if use_cuda:
|
||||
|
@ -119,7 +122,7 @@ def format_data(data):
|
|||
text_lengths = text_lengths.cuda(non_blocking=True)
|
||||
mel_input = mel_input.cuda(non_blocking=True)
|
||||
mel_lengths = mel_lengths.cuda(non_blocking=True)
|
||||
linear_input = linear_input.cuda(non_blocking=True) if c.model.lower() in ["tacotron"] else None
|
||||
linear_input = linear_input.cuda(non_blocking=True) if config.model.lower() in ["tacotron"] else None
|
||||
stop_targets = stop_targets.cuda(non_blocking=True)
|
||||
if speaker_ids is not None:
|
||||
speaker_ids = speaker_ids.cuda(non_blocking=True)
|
||||
|
@ -145,9 +148,10 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
epoch_time = 0
|
||||
keep_avg = KeepAverage()
|
||||
if use_cuda:
|
||||
batch_n_iter = int(len(data_loader.dataset) / (c.batch_size * num_gpus))
|
||||
batch_n_iter = int(
|
||||
len(data_loader.dataset) / (config.batch_size * num_gpus))
|
||||
else:
|
||||
batch_n_iter = int(len(data_loader.dataset) / c.batch_size)
|
||||
batch_n_iter = int(len(data_loader.dataset) / config.batch_size)
|
||||
end_time = time.time()
|
||||
c_logger.print_train_start()
|
||||
for num_iter, data in enumerate(data_loader):
|
||||
|
@ -171,31 +175,18 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
global_step += 1
|
||||
|
||||
# setup lr
|
||||
if c.noam_schedule:
|
||||
if config.noam_schedule:
|
||||
scheduler.step()
|
||||
|
||||
optimizer.zero_grad()
|
||||
if optimizer_st:
|
||||
optimizer_st.zero_grad()
|
||||
|
||||
with torch.cuda.amp.autocast(enabled=c.mixed_precision):
|
||||
with torch.cuda.amp.autocast(enabled=config.mixed_precision):
|
||||
# forward pass model
|
||||
if c.bidirectional_decoder or c.double_decoder_consistency:
|
||||
(
|
||||
decoder_output,
|
||||
postnet_output,
|
||||
alignments,
|
||||
stop_tokens,
|
||||
decoder_backward_output,
|
||||
alignments_backward,
|
||||
) = model(
|
||||
text_input,
|
||||
text_lengths,
|
||||
mel_input,
|
||||
mel_lengths,
|
||||
speaker_ids=speaker_ids,
|
||||
speaker_embeddings=speaker_embeddings,
|
||||
)
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
||||
text_input, text_lengths, mel_input, mel_lengths, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||
text_input,
|
||||
|
@ -237,18 +228,18 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
raise RuntimeError(f"Detected NaN loss at step {global_step}.")
|
||||
|
||||
# optimizer step
|
||||
if c.mixed_precision:
|
||||
if config.mixed_precision:
|
||||
# model optimizer step in mixed precision mode
|
||||
scaler.scale(loss_dict["loss"]).backward()
|
||||
scaler.unscale_(optimizer)
|
||||
optimizer, current_lr = adam_weight_decay(optimizer)
|
||||
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
|
||||
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
|
||||
scaler.step(optimizer)
|
||||
scaler.update()
|
||||
|
||||
# stopnet optimizer step
|
||||
if c.separate_stopnet:
|
||||
scaler_st.scale(loss_dict["stopnet_loss"]).backward()
|
||||
if config.separate_stopnet:
|
||||
scaler_st.scale(loss_dict['stopnet_loss']).backward()
|
||||
scaler.unscale_(optimizer_st)
|
||||
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
||||
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
||||
|
@ -260,12 +251,12 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
# main model optimizer step
|
||||
loss_dict["loss"].backward()
|
||||
optimizer, current_lr = adam_weight_decay(optimizer)
|
||||
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
|
||||
grad_norm, _ = check_update(model, config.grad_clip, ignore_stopnet=True)
|
||||
optimizer.step()
|
||||
|
||||
# stopnet optimizer step
|
||||
if c.separate_stopnet:
|
||||
loss_dict["stopnet_loss"].backward()
|
||||
if config.separate_stopnet:
|
||||
loss_dict['stopnet_loss'].backward()
|
||||
optimizer_st, _ = adam_weight_decay(optimizer_st)
|
||||
grad_norm_st, _ = check_update(model.decoder.stopnet, 1.0)
|
||||
optimizer_st.step()
|
||||
|
@ -281,12 +272,10 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
|
||||
# aggregate losses from processes
|
||||
if num_gpus > 1:
|
||||
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
|
||||
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
|
||||
loss_dict["loss"] = reduce_tensor(loss_dict["loss"].data, num_gpus)
|
||||
loss_dict["stopnet_loss"] = (
|
||||
reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus) if c.stopnet else loss_dict["stopnet_loss"]
|
||||
)
|
||||
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
||||
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
||||
loss_dict['loss'] = reduce_tensor(loss_dict['loss'] .data, num_gpus)
|
||||
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus) if config.stopnet else loss_dict['stopnet_loss']
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
|
@ -306,7 +295,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
keep_avg.update_values(update_train_values)
|
||||
|
||||
# print training progress
|
||||
if global_step % c.print_step == 0:
|
||||
if global_step % config.print_step == 0:
|
||||
log_dict = {
|
||||
"max_spec_length": [max_spec_length, 1], # value, precision
|
||||
"max_text_length": [max_text_length, 1],
|
||||
|
@ -319,7 +308,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
if args.rank == 0:
|
||||
# Plot Training Iter Stats
|
||||
# reduce TB load
|
||||
if global_step % c.tb_plot_step == 0:
|
||||
if global_step % config.tb_plot_step == 0:
|
||||
iter_stats = {
|
||||
"lr": current_lr,
|
||||
"grad_norm": grad_norm,
|
||||
|
@ -329,29 +318,20 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
iter_stats.update(loss_dict)
|
||||
tb_logger.tb_train_iter_stats(global_step, iter_stats)
|
||||
|
||||
if global_step % c.save_step == 0:
|
||||
if c.checkpoint:
|
||||
if global_step % config.save_step == 0:
|
||||
if config.checkpoint:
|
||||
# save model
|
||||
save_checkpoint(
|
||||
model,
|
||||
optimizer,
|
||||
global_step,
|
||||
epoch,
|
||||
model.decoder.r,
|
||||
OUT_PATH,
|
||||
optimizer_st=optimizer_st,
|
||||
model_loss=loss_dict["postnet_loss"],
|
||||
characters=model_characters,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None,
|
||||
)
|
||||
save_checkpoint(model, optimizer, global_step, epoch, model.decoder.r, OUT_PATH,
|
||||
optimizer_st=optimizer_st,
|
||||
model_loss=loss_dict['postnet_loss'],
|
||||
characters=model_characters,
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None)
|
||||
|
||||
# Diagnostic visualizations
|
||||
const_spec = postnet_output[0].data.cpu().numpy()
|
||||
gt_spec = (
|
||||
linear_input[0].data.cpu().numpy()
|
||||
if c.model in ["Tacotron", "TacotronGST"]
|
||||
else mel_input[0].data.cpu().numpy()
|
||||
)
|
||||
gt_spec = linear_input[0].data.cpu().numpy() if config.model in [
|
||||
"Tacotron", "TacotronGST"
|
||||
] else mel_input[0].data.cpu().numpy()
|
||||
align_img = alignments[0].data.cpu().numpy()
|
||||
|
||||
figures = {
|
||||
|
@ -360,19 +340,19 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
"alignment": plot_alignment(align_img, output_fig=False),
|
||||
}
|
||||
|
||||
if c.bidirectional_decoder or c.double_decoder_consistency:
|
||||
figures["alignment_backward"] = plot_alignment(
|
||||
alignments_backward[0].data.cpu().numpy(), output_fig=False
|
||||
)
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
figures["alignment_backward"] = plot_alignment(alignments_backward[0].data.cpu().numpy(), output_fig=False)
|
||||
|
||||
tb_logger.tb_train_figures(global_step, figures)
|
||||
|
||||
# Sample audio
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
train_audio = ap.inv_spectrogram(const_spec.T)
|
||||
if config.model in ["Tacotron", "TacotronGST"]:
|
||||
train_audio = ap.inv_spectrogram(const_speconfig.T)
|
||||
else:
|
||||
train_audio = ap.inv_melspectrogram(const_spec.T)
|
||||
tb_logger.tb_train_audios(global_step, {"TrainAudio": train_audio}, c.audio["sample_rate"])
|
||||
train_audio = ap.inv_melspectrogram(const_speconfig.T)
|
||||
tb_logger.tb_train_audios(global_step,
|
||||
{'TrainAudio': train_audio},
|
||||
config.audio["sample_rate"])
|
||||
end_time = time.time()
|
||||
|
||||
# print epoch stats
|
||||
|
@ -383,7 +363,7 @@ def train(data_loader, model, criterion, optimizer, optimizer_st, scheduler, ap,
|
|||
epoch_stats = {"epoch_time": epoch_time}
|
||||
epoch_stats.update(keep_avg.avg_values)
|
||||
tb_logger.tb_train_epoch_stats(global_step, epoch_stats)
|
||||
if c.tb_model_param_stats:
|
||||
if config.tb_model_param_stats:
|
||||
tb_logger.tb_model_weights(model, global_step)
|
||||
return keep_avg.avg_values, global_step
|
||||
|
||||
|
@ -414,17 +394,9 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
assert mel_input.shape[1] % model.decoder.r == 0
|
||||
|
||||
# forward pass model
|
||||
if c.bidirectional_decoder or c.double_decoder_consistency:
|
||||
(
|
||||
decoder_output,
|
||||
postnet_output,
|
||||
alignments,
|
||||
stop_tokens,
|
||||
decoder_backward_output,
|
||||
alignments_backward,
|
||||
) = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
|
||||
)
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
decoder_output, postnet_output, alignments, stop_tokens, decoder_backward_output, alignments_backward = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings)
|
||||
else:
|
||||
decoder_output, postnet_output, alignments, stop_tokens = model(
|
||||
text_input, text_lengths, mel_input, speaker_ids=speaker_ids, speaker_embeddings=speaker_embeddings
|
||||
|
@ -466,10 +438,10 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
|
||||
# aggregate losses from processes
|
||||
if num_gpus > 1:
|
||||
loss_dict["postnet_loss"] = reduce_tensor(loss_dict["postnet_loss"].data, num_gpus)
|
||||
loss_dict["decoder_loss"] = reduce_tensor(loss_dict["decoder_loss"].data, num_gpus)
|
||||
if c.stopnet:
|
||||
loss_dict["stopnet_loss"] = reduce_tensor(loss_dict["stopnet_loss"].data, num_gpus)
|
||||
loss_dict['postnet_loss'] = reduce_tensor(loss_dict['postnet_loss'].data, num_gpus)
|
||||
loss_dict['decoder_loss'] = reduce_tensor(loss_dict['decoder_loss'].data, num_gpus)
|
||||
if config.stopnet:
|
||||
loss_dict['stopnet_loss'] = reduce_tensor(loss_dict['stopnet_loss'].data, num_gpus)
|
||||
|
||||
# detach loss values
|
||||
loss_dict_new = dict()
|
||||
|
@ -486,18 +458,16 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
update_train_values["avg_" + key] = value
|
||||
keep_avg.update_values(update_train_values)
|
||||
|
||||
if c.print_eval:
|
||||
if config.print_eval:
|
||||
c_logger.print_eval_step(num_iter, loss_dict, keep_avg.avg_values)
|
||||
|
||||
if args.rank == 0:
|
||||
# Diagnostic visualizations
|
||||
idx = np.random.randint(mel_input.shape[0])
|
||||
const_spec = postnet_output[idx].data.cpu().numpy()
|
||||
gt_spec = (
|
||||
linear_input[idx].data.cpu().numpy()
|
||||
if c.model in ["Tacotron", "TacotronGST"]
|
||||
else mel_input[idx].data.cpu().numpy()
|
||||
)
|
||||
gt_spec = linear_input[idx].data.cpu().numpy() if config.model in [
|
||||
"Tacotron", "TacotronGST"
|
||||
] else mel_input[idx].data.cpu().numpy()
|
||||
align_img = alignments[idx].data.cpu().numpy()
|
||||
|
||||
eval_figures = {
|
||||
|
@ -507,22 +477,23 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
}
|
||||
|
||||
# Sample audio
|
||||
if c.model in ["Tacotron", "TacotronGST"]:
|
||||
eval_audio = ap.inv_spectrogram(const_spec.T)
|
||||
if config.model in ["Tacotron", "TacotronGST"]:
|
||||
eval_audio = ap.inv_spectrogram(const_speconfig.T)
|
||||
else:
|
||||
eval_audio = ap.inv_melspectrogram(const_spec.T)
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio}, c.audio["sample_rate"])
|
||||
eval_audio = ap.inv_melspectrogram(const_speconfig.T)
|
||||
tb_logger.tb_eval_audios(global_step, {"ValAudio": eval_audio},
|
||||
config.audio["sample_rate"])
|
||||
|
||||
# Plot Validation Stats
|
||||
|
||||
if c.bidirectional_decoder or c.double_decoder_consistency:
|
||||
if config.bidirectional_decoder or config.double_decoder_consistency:
|
||||
align_b_img = alignments_backward[idx].data.cpu().numpy()
|
||||
eval_figures["alignment2"] = plot_alignment(align_b_img, output_fig=False)
|
||||
tb_logger.tb_eval_stats(global_step, keep_avg.avg_values)
|
||||
tb_logger.tb_eval_figures(global_step, eval_figures)
|
||||
|
||||
if args.rank == 0 and epoch > c.test_delay_epochs:
|
||||
if c.test_sentences_file is None:
|
||||
if args.rank == 0 and epoch > config.test_delay_epochs:
|
||||
if config.test_sentences_file is None:
|
||||
test_sentences = [
|
||||
"It took me quite a long time to develop a voice, and now that I have it I'm not going to be silent.",
|
||||
"Be a voice, not an echo.",
|
||||
|
@ -531,40 +502,36 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
"Prior to November 22, 1963.",
|
||||
]
|
||||
else:
|
||||
with open(c.test_sentences_file, "r") as f:
|
||||
with open(config.test_sentences_file, "r") as f:
|
||||
test_sentences = [s.strip() for s in f.readlines()]
|
||||
|
||||
# test sentences
|
||||
test_audios = {}
|
||||
test_figures = {}
|
||||
print(" | > Synthesizing test sentences")
|
||||
speaker_id = 0 if c.use_speaker_embedding else None
|
||||
speaker_embedding = (
|
||||
speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping) - 1)]]["embedding"]
|
||||
if c.use_external_speaker_embedding_file and c.use_speaker_embedding
|
||||
else None
|
||||
)
|
||||
style_wav = c.get("gst_style_input")
|
||||
if style_wav is None and c.use_gst:
|
||||
speaker_id = 0 if config.use_speaker_embedding else None
|
||||
speaker_embedding = speaker_mapping[list(speaker_mapping.keys())[randrange(len(speaker_mapping)-1)]]['embedding'] if config.use_external_speaker_embedding_file and config.use_speaker_embedding else None
|
||||
style_wav = config.get("gst_style_input")
|
||||
if style_wav is None and config.use_gst:
|
||||
# inicialize GST with zero dict.
|
||||
style_wav = {}
|
||||
print("WARNING: You don't provided a gst style wav, for this reason we use a zero tensor!")
|
||||
for i in range(c.gst['gst_num_style_tokens']):
|
||||
for i in range(config.gst['gst_num_style_tokens']):
|
||||
style_wav[str(i)] = 0
|
||||
style_wav = c.get("gst_style_input", style_wav)
|
||||
style_wav = config.get("gst_style_input")
|
||||
for idx, test_sentence in enumerate(test_sentences):
|
||||
try:
|
||||
wav, alignment, decoder_output, postnet_output, stop_tokens, _ = synthesis(
|
||||
model,
|
||||
test_sentence,
|
||||
c,
|
||||
config,
|
||||
use_cuda,
|
||||
ap,
|
||||
speaker_id=speaker_id,
|
||||
speaker_embedding=speaker_embedding,
|
||||
style_wav=style_wav,
|
||||
truncated=False,
|
||||
enable_eos_bos_chars=c.enable_eos_bos_chars, # pylint: disable=unused-argument
|
||||
enable_eos_bos_chars=config.enable_eos_bos_chars, #pylint: disable=unused-argument
|
||||
use_griffin_lim=True,
|
||||
do_trim_silence=False,
|
||||
)
|
||||
|
@ -579,7 +546,8 @@ def evaluate(data_loader, model, criterion, ap, global_step, epoch):
|
|||
except: # pylint: disable=bare-except
|
||||
print(" !! Error creating Test Sentence -", idx)
|
||||
traceback.print_exc()
|
||||
tb_logger.tb_test_audios(global_step, test_audios, c.audio["sample_rate"])
|
||||
tb_logger.tb_test_audios(global_step, test_audios,
|
||||
config.audio['sample_rate'])
|
||||
tb_logger.tb_test_figures(global_step, test_figures)
|
||||
return keep_avg.avg_values
|
||||
|
||||
|
@ -588,45 +556,48 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# pylint: disable=global-variable-undefined
|
||||
global meta_data_train, meta_data_eval, speaker_mapping, symbols, phonemes, model_characters
|
||||
# Audio processor
|
||||
ap = AudioProcessor(**c.audio)
|
||||
ap = AudioProcessor(**config.audio.to_dict())
|
||||
|
||||
# setup custom characters if set in config file.
|
||||
if "characters" in c.keys():
|
||||
symbols, phonemes = make_symbols(**c.characters)
|
||||
if config.characters is not None:
|
||||
symbols, phonemes = make_symbols(**config.characters.to_dict())
|
||||
|
||||
# DISTRUBUTED
|
||||
if num_gpus > 1:
|
||||
init_distributed(args.rank, num_gpus, args.group_id, c.distributed["backend"], c.distributed["url"])
|
||||
num_chars = len(phonemes) if c.use_phonemes else len(symbols)
|
||||
model_characters = phonemes if c.use_phonemes else symbols
|
||||
init_distributed(args.rank, num_gpus, args.group_id,
|
||||
config.distributed["backend"], config.distributed["url"])
|
||||
num_chars = len(phonemes) if config.use_phonemes else len(symbols)
|
||||
model_characters = phonemes if config.use_phonemes else symbols
|
||||
|
||||
# load data instances
|
||||
meta_data_train, meta_data_eval = load_meta_data(c.datasets)
|
||||
meta_data_train, meta_data_eval = load_meta_data(config.datasets)
|
||||
|
||||
# set the portion of the data used for training
|
||||
if "train_portion" in c.keys():
|
||||
meta_data_train = meta_data_train[: int(len(meta_data_train) * c.train_portion)]
|
||||
if "eval_portion" in c.keys():
|
||||
meta_data_eval = meta_data_eval[: int(len(meta_data_eval) * c.eval_portion)]
|
||||
if config.has('train_portion'):
|
||||
meta_data_train = meta_data_train[:int(len(meta_data_train) * config.train_portion)]
|
||||
if config.has('eval_portion'):
|
||||
meta_data_eval = meta_data_eval[:int(len(meta_data_eval) * config.eval_portion)]
|
||||
|
||||
# parse speakers
|
||||
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(c, args, meta_data_train, OUT_PATH)
|
||||
num_speakers, speaker_embedding_dim, speaker_mapping = parse_speakers(config, args, meta_data_train, OUT_PATH)
|
||||
|
||||
model = setup_model(num_chars, num_speakers, c, speaker_embedding_dim)
|
||||
model = setup_model(num_chars, num_speakers, config, speaker_embedding_dim)
|
||||
|
||||
# scalers for mixed precision training
|
||||
scaler = torch.cuda.amp.GradScaler() if c.mixed_precision else None
|
||||
scaler_st = torch.cuda.amp.GradScaler() if c.mixed_precision and c.separate_stopnet else None
|
||||
scaler = torch.cuda.amp.GradScaler() if config.mixed_precision else None
|
||||
scaler_st = torch.cuda.amp.GradScaler() if config.mixed_precision and config.separate_stopnet else None
|
||||
|
||||
params = set_weight_decay(model, c.wd)
|
||||
optimizer = RAdam(params, lr=c.lr, weight_decay=0)
|
||||
if c.stopnet and c.separate_stopnet:
|
||||
optimizer_st = RAdam(model.decoder.stopnet.parameters(), lr=c.lr, weight_decay=0)
|
||||
params = set_weight_decay(model, config.wd)
|
||||
optimizer = RAdam(params, lr=config.lr, weight_decay=0)
|
||||
if config.stopnet and config.separate_stopnet:
|
||||
optimizer_st = RAdam(model.decoder.stopnet.parameters(),
|
||||
lr=config.lr,
|
||||
weight_decay=0)
|
||||
else:
|
||||
optimizer_st = None
|
||||
|
||||
# setup criterion
|
||||
criterion = TacotronLoss(c, stopnet_pos_weight=c.stopnet_pos_weight, ga_sigma=0.4)
|
||||
criterion = TacotronLoss(config, stopnet_pos_weight=config.stopnet_pos_weight, ga_sigma=0.4)
|
||||
if args.restore_path:
|
||||
print(f" > Restoring from {os.path.basename(args.restore_path)}...")
|
||||
checkpoint = torch.load(args.restore_path, map_location="cpu")
|
||||
|
@ -635,11 +606,11 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
model.load_state_dict(checkpoint["model"])
|
||||
# optimizer restore
|
||||
print(" > Restoring Optimizer...")
|
||||
optimizer.load_state_dict(checkpoint["optimizer"])
|
||||
if "scaler" in checkpoint and c.mixed_precision:
|
||||
optimizer.load_state_dict(checkpoint['optimizer'])
|
||||
if "scaler" in checkpoint and config.mixed_precision:
|
||||
print(" > Restoring AMP Scaler...")
|
||||
scaler.load_state_dict(checkpoint["scaler"])
|
||||
if c.reinit_layers:
|
||||
if config.reinit_layers:
|
||||
raise RuntimeError
|
||||
except (KeyError, RuntimeError):
|
||||
print(" > Partial model initialization...")
|
||||
|
@ -651,9 +622,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
del model_dict
|
||||
|
||||
for group in optimizer.param_groups:
|
||||
group["lr"] = c.lr
|
||||
print(" > Model restored from step %d" % checkpoint["step"], flush=True)
|
||||
args.restore_step = checkpoint["step"]
|
||||
group['lr'] = config.lr
|
||||
print(" > Model restored from step %d" % checkpoint['step'],
|
||||
flush=True)
|
||||
args.restore_step = checkpoint['step']
|
||||
else:
|
||||
args.restore_step = 0
|
||||
|
||||
|
@ -665,8 +637,10 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
if num_gpus > 1:
|
||||
model = apply_gradient_allreduce(model)
|
||||
|
||||
if c.noam_schedule:
|
||||
scheduler = NoamLR(optimizer, warmup_steps=c.warmup_steps, last_epoch=args.restore_step - 1)
|
||||
if config.noam_schedule:
|
||||
scheduler = NoamLR(optimizer,
|
||||
warmup_steps=config.warmup_steps,
|
||||
last_epoch=args.restore_step - 1)
|
||||
else:
|
||||
scheduler = None
|
||||
|
||||
|
@ -680,22 +654,22 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
print(" > Restoring best loss from " f"{os.path.basename(args.best_path)} ...")
|
||||
best_loss = torch.load(args.best_path, map_location="cpu")["model_loss"]
|
||||
print(f" > Starting with loaded last best loss {best_loss}.")
|
||||
keep_all_best = c.get("keep_all_best", False)
|
||||
keep_after = c.get("keep_after", 10000) # void if keep_all_best False
|
||||
keep_all_best = config.keep_all_best
|
||||
keep_after = config.keep_after # void if keep_all_best False
|
||||
|
||||
# define data loaders
|
||||
train_loader = setup_loader(ap, model.decoder.r, is_val=False, verbose=True)
|
||||
eval_loader = setup_loader(ap, model.decoder.r, is_val=True)
|
||||
|
||||
global_step = args.restore_step
|
||||
for epoch in range(0, c.epochs):
|
||||
c_logger.print_epoch_start(epoch, c.epochs)
|
||||
for epoch in range(0, config.epochs):
|
||||
c_logger.print_epoch_start(epoch, config.epochs)
|
||||
# set gradual training
|
||||
if c.gradual_training is not None:
|
||||
r, c.batch_size = gradual_training_scheduler(global_step, c)
|
||||
c.r = r
|
||||
if config.gradual_training is not None:
|
||||
r, config.batch_size = gradual_training_scheduler(global_step, c)
|
||||
config.r = r
|
||||
model.decoder.set_r(r)
|
||||
if c.bidirectional_decoder:
|
||||
if config.bidirectional_decoder:
|
||||
model.decoder_backward.set_r(r)
|
||||
train_loader.dataset.outputs_per_step = r
|
||||
eval_loader.dataset.outputs_per_step = r
|
||||
|
@ -719,9 +693,9 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
# eval one epoch
|
||||
eval_avg_loss_dict = evaluate(eval_loader, model, criterion, ap, global_step, epoch)
|
||||
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
|
||||
target_loss = train_avg_loss_dict["avg_postnet_loss"]
|
||||
if c.run_eval:
|
||||
target_loss = eval_avg_loss_dict["avg_postnet_loss"]
|
||||
target_loss = train_avg_loss_dict['avg_postnet_loss']
|
||||
if config.run_eval:
|
||||
target_loss = eval_avg_loss_dict['avg_postnet_loss']
|
||||
best_loss = save_best_model(
|
||||
target_loss,
|
||||
best_loss,
|
||||
|
@ -729,31 +703,26 @@ def main(args): # pylint: disable=redefined-outer-name
|
|||
optimizer,
|
||||
global_step,
|
||||
epoch,
|
||||
c.r,
|
||||
config.r,
|
||||
OUT_PATH,
|
||||
model_characters,
|
||||
keep_all_best=keep_all_best,
|
||||
keep_after=keep_after,
|
||||
scaler=scaler.state_dict() if c.mixed_precision else None,
|
||||
scaler=scaler.state_dict() if config.mixed_precision else None
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
args = parse_arguments(sys.argv)
|
||||
c = TacotronConfig()
|
||||
args = c.init_argparse(args)
|
||||
c, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(
|
||||
args, c, model_type='tacotron')
|
||||
|
||||
if __name__ == '__main__':
|
||||
args, config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = init_training(sys.argv)
|
||||
try:
|
||||
main(args)
|
||||
except KeyboardInterrupt:
|
||||
remove_experiment_folder(OUT_PATH)
|
||||
# remove_experiment_folder(OUT_PATH)
|
||||
try:
|
||||
sys.exit(0)
|
||||
except SystemExit:
|
||||
os._exit(0) # pylint: disable=protected-access
|
||||
except Exception: # pylint: disable=broad-except
|
||||
remove_experiment_folder(OUT_PATH)
|
||||
# remove_experiment_folder(OUT_PATH)
|
||||
traceback.print_exc()
|
||||
sys.exit(1)
|
||||
|
|
|
@ -37,8 +37,8 @@ def load_meta_data(datasets, eval_split=True):
|
|||
meta_data_eval_all += meta_data_eval
|
||||
meta_data_train_all += meta_data_train
|
||||
# load attention masks for duration predictor training
|
||||
if "meta_file_attn_mask" in dataset and dataset["meta_file_attn_mask"] is not None:
|
||||
meta_data = dict(load_attention_mask_meta_data(dataset["meta_file_attn_mask"]))
|
||||
if dataset.meta_file_attn_mask is not None:
|
||||
meta_data = dict(load_attention_mask_meta_data(dataset['meta_file_attn_mask']))
|
||||
for idx, ins in enumerate(meta_data_train_all):
|
||||
attn_file = meta_data[ins[1]].strip()
|
||||
meta_data_train_all[idx].append(attn_file)
|
||||
|
|
|
@ -38,7 +38,7 @@ def sequence_mask(sequence_length, max_len=None):
|
|||
|
||||
def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
|
||||
print(" > Using model: {}".format(c.model))
|
||||
find_module("TTS.tts.models", c.model.lower())
|
||||
MyModel = find_module("TTS.tts.models", c.model.lower())
|
||||
if c.model.lower() in "tacotron":
|
||||
model = MyModel(
|
||||
num_chars=num_chars + getattr(c, "add_blank", False),
|
||||
|
@ -76,11 +76,11 @@ def setup_model(num_chars, num_speakers, c, speaker_embedding_dim=None):
|
|||
r=c.r,
|
||||
postnet_output_dim=c.audio["num_mels"],
|
||||
decoder_output_dim=c.audio["num_mels"],
|
||||
gst=c.use_gst,
|
||||
gst_embedding_dim=c.gst["gst_embedding_dim"],
|
||||
gst_num_heads=c.gst["gst_num_heads"],
|
||||
gst_style_tokens=c.gst["gst_style_tokens"],
|
||||
gst_use_speaker_embedding=c.gst["gst_use_speaker_embedding"],
|
||||
gst=c.gst is not None,
|
||||
gst_embedding_dim=None if c.gst is None else c.gst['gst_embedding_dim'],
|
||||
gst_num_heads=None if c.gst is None else c.gst['gst_num_heads'],
|
||||
gst_num_style_tokens=None if c.gst is None else c.gst['gst_num_style_tokens'],
|
||||
gst_use_speaker_embedding=None if c.gst is None else c.gst['gst_use_speaker_embedding'],
|
||||
attn_type=c.attention_type,
|
||||
attn_win=c.windowing,
|
||||
attn_norm=c.attention_norm,
|
||||
|
|
|
@ -6,16 +6,17 @@ import argparse
|
|||
import glob
|
||||
import json
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
|
||||
from TTS.tts.utils.text.symbols import parse_symbols
|
||||
from TTS.utils.console_logger import ConsoleLogger
|
||||
from TTS.utils.generic_utils import create_experiment_folder, get_git_branch
|
||||
from TTS.utils.io import copy_model_files
|
||||
from TTS.utils.io import copy_model_files, load_config
|
||||
from TTS.utils.tensorboard_logger import TensorboardLogger
|
||||
|
||||
|
||||
def parse_arguments(argv):
|
||||
def init_arguments(argv):
|
||||
"""Parse command line arguments of training scripts.
|
||||
|
||||
Args:
|
||||
|
@ -45,16 +46,26 @@ def parse_arguments(argv):
|
|||
"Best model file to be used for extracting best loss."
|
||||
"If not specified, the latest best model in continue path is used"
|
||||
),
|
||||
default="",
|
||||
)
|
||||
default="")
|
||||
parser.add_argument("--config_path",
|
||||
type=str,
|
||||
help="Path to config file for training.",
|
||||
required="--continue_path" not in argv)
|
||||
parser.add_argument("--debug",
|
||||
type=bool,
|
||||
default=False,
|
||||
help="Do not verify commit integrity to run training.")
|
||||
parser.add_argument(
|
||||
"--config_path", type=str, help="Path to config file for training.", required="--continue_path" not in argv
|
||||
)
|
||||
parser.add_argument("--debug", type=bool, default=False, help="Do not verify commit integrity to run training.")
|
||||
parser.add_argument("--rank", type=int, default=0, help="DISTRIBUTED: process rank for distributed training.")
|
||||
parser.add_argument("--group_id", type=str, default="", help="DISTRIBUTED: process group id.")
|
||||
"--rank",
|
||||
type=int,
|
||||
default=0,
|
||||
help="DISTRIBUTED: process rank for distributed training.")
|
||||
parser.add_argument("--group_id",
|
||||
type=str,
|
||||
default="",
|
||||
help="DISTRIBUTED: process group id.")
|
||||
|
||||
return parser.parse_args()
|
||||
return parser
|
||||
|
||||
|
||||
def get_last_checkpoint(path):
|
||||
|
@ -115,7 +126,7 @@ def get_last_checkpoint(path):
|
|||
return last_models["checkpoint"], last_models["best_model"]
|
||||
|
||||
|
||||
def process_args(args, config, tb_prefix):
|
||||
def process_args(args):
|
||||
"""Process parsed comand line arguments.
|
||||
|
||||
Args:
|
||||
|
@ -130,21 +141,27 @@ def process_args(args, config, tb_prefix):
|
|||
tb_logger (TTS.utils.tensorboard.TensorboardLogger): Class that does
|
||||
the TensorBoard loggind.
|
||||
"""
|
||||
if isinstance(args, tuple):
|
||||
args, coqpit_overrides = args
|
||||
if args.continue_path:
|
||||
# continue a previous training from its output folder
|
||||
args.output_path = args.continue_path
|
||||
experiment_path = args.continue_path
|
||||
args.config_path = os.path.join(args.continue_path, "config.json")
|
||||
args.restore_path, best_model = get_last_checkpoint(args.continue_path)
|
||||
if not args.best_path:
|
||||
args.best_path = best_model
|
||||
# setup output paths and read configs
|
||||
config.load_json(args.config_path)
|
||||
config = load_config(args.config_path)
|
||||
# override values from command-line args
|
||||
config.parse_args(coqpit_overrides)
|
||||
if config.mixed_precision:
|
||||
print(" > Mixed precision mode is ON")
|
||||
if not os.path.exists(config.output_path):
|
||||
out_path = create_experiment_folder(config.output_path, config.run_name,
|
||||
args.debug)
|
||||
audio_path = os.path.join(out_path, "test_audios")
|
||||
experiment_path = create_experiment_folder(config.output_path,
|
||||
config.run_name, args.debug)
|
||||
else:
|
||||
experiment_path = config.output_path
|
||||
audio_path = os.path.join(experiment_path, "test_audios")
|
||||
# setup rank 0 process in distributed training
|
||||
if args.rank == 0:
|
||||
os.makedirs(audio_path, exist_ok=True)
|
||||
|
@ -157,13 +174,22 @@ def process_args(args, config, tb_prefix):
|
|||
# compatibility.
|
||||
if config.has('characters_config'):
|
||||
used_characters = parse_symbols()
|
||||
new_fields["characters"] = used_characters
|
||||
copy_model_files(c, args.config_path, out_path, new_fields)
|
||||
new_fields['characters'] = used_characters
|
||||
copy_model_files(config, args.config_path, experiment_path, new_fields)
|
||||
os.chmod(audio_path, 0o775)
|
||||
os.chmod(out_path, 0o775)
|
||||
log_path = out_path
|
||||
tb_logger = TensorboardLogger(log_path, model_name=tb_prefix)
|
||||
os.chmod(experiment_path, 0o775)
|
||||
tb_logger = TensorboardLogger(experiment_path,
|
||||
model_name=config.model)
|
||||
# write model desc to tensorboard
|
||||
tb_logger.tb_add_text("model-description", config["run_description"], 0)
|
||||
tb_logger.tb_add_text("model-description", config["run_description"],
|
||||
0)
|
||||
c_logger = ConsoleLogger()
|
||||
return c, out_path, audio_path, c_logger, tb_logger
|
||||
return config, experiment_path, audio_path, c_logger, tb_logger
|
||||
|
||||
|
||||
def init_training(argv):
|
||||
"""Initialization of a training run."""
|
||||
parser = init_arguments(argv)
|
||||
args = parser.parse_known_args()
|
||||
config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger = process_args(args)
|
||||
return args[0], config, OUT_PATH, AUDIO_PATH, c_logger, tb_logger
|
||||
|
|
|
@ -3,9 +3,11 @@ import os
|
|||
import pickle as pickle_tts
|
||||
import re
|
||||
from shutil import copyfile
|
||||
from TTS.utils.generic_utils import find_module
|
||||
|
||||
import yaml
|
||||
from TTS.utils.generic_utils import find_module
|
||||
|
||||
from .generic_utils import find_module
|
||||
|
||||
|
||||
class RenamingUnpickler(pickle_tts.Unpickler):
|
||||
|
@ -35,26 +37,25 @@ def read_json_with_comments(json_path):
|
|||
data = json.loads(input_str)
|
||||
return data
|
||||
|
||||
def load_config(config_path: str) -> AttrDict:
|
||||
"""DEPRECATED: Load config files and discard comments
|
||||
|
||||
Args:
|
||||
config_path (str): path to config file.
|
||||
"""
|
||||
config_dict = AttrDict()
|
||||
def load_config(config_path: str) -> None:
|
||||
config_dict = {}
|
||||
ext = os.path.splitext(config_path)[1]
|
||||
if ext in (".yml", ".yaml"):
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
data = yaml.safe_load(f)
|
||||
else:
|
||||
elif ext == '.json':
|
||||
with open(config_path, "r", encoding="utf-8") as f:
|
||||
input_str = f.read()
|
||||
data = json.loads(input_str)
|
||||
else:
|
||||
raise TypeError(f' [!] Unknown config file type {ext}')
|
||||
config_dict.update(data)
|
||||
config_class = find_module('TTS.tts.configs', config_dict.model.lower()+'_config')
|
||||
config_class = find_module('TTS.tts.configs', config_dict['model'].lower()+'_config')
|
||||
config = config_class()
|
||||
config.from_dict(config_dict)
|
||||
return
|
||||
return config
|
||||
|
||||
|
||||
|
||||
def copy_model_files(c, config_file, out_path, new_fields):
|
||||
|
|
Loading…
Reference in New Issue