mirror of https://github.com/coqui-ai/TTS.git
Add M-AI-labs preprocessor and set config for en_UK
This commit is contained in:
parent
f4fa155cd3
commit
7af1aeaf7a
10
config.json
10
config.json
|
@ -43,13 +43,13 @@
|
|||
"tb_model_param_stats": true, // true, plots param stats per layer on tensorboard. Might be memory consuming, but good for debugging.
|
||||
|
||||
"run_eval": true,
|
||||
"data_path": "../../Data/LJSpeech-1.1/", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "transcript_train.txt", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "transcript_val.txt", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "tweb", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"data_path": "/home/erogol/Data/en_UK/by_book/female/elizabeth_klett/", // DATASET-RELATED: can overwritten from command argument
|
||||
"meta_file_train": "jane_eyre/metadata_train.csv, wives_and_daughters/metadata_train.csv", // DATASET-RELATED: metafile for training dataloader.
|
||||
"meta_file_val": "jane_eyre/metadata_val.csv, wives_and_daughters/metadata_val.csv", // DATASET-RELATED: metafile for evaluation dataloader.
|
||||
"dataset": "mailabs", // DATASET-RELATED: one of TTS.dataset.preprocessors depending on your target dataset. Use "tts_cache" for pre-computed dataset by extract_features.py
|
||||
"min_seq_len": 0, // DATASET-RELATED: minimum text length to use in training
|
||||
"max_seq_len": 300, // DATASET-RELATED: maximum text length
|
||||
"output_path": "/media/erogol/data_ssd/Data/models/tweb_models/", // DATASET-RELATED: output path for all training outputs.
|
||||
"output_path": "/media/erogol/data_ssd/Data/models/en_UK/", // DATASET-RELATED: output path for all training outputs.
|
||||
"num_loader_workers": 8, // number of training data loader processes. Don't set it too big. 4-8 are good values.
|
||||
"num_val_loader_workers": 4 // number of evaluation data loader processes.
|
||||
}
|
||||
|
|
|
@ -42,6 +42,28 @@ def tweb(root_path, meta_file):
|
|||
# return {'text': texts, 'wavs': wavs}
|
||||
|
||||
|
||||
def mailabs(root_path, meta_files):
|
||||
"""Normalizes M-AI-Labs meta data files to TTS format"""
|
||||
folders = [os.path.dirname(f.strip()) for f in meta_files.split(",")]
|
||||
meta_files = [f.strip() for f in meta_files.split(",")]
|
||||
items = []
|
||||
for idx, meta_file in enumerate(meta_files):
|
||||
print(" | > {}".format(meta_file))
|
||||
folder = folders[idx]
|
||||
txt_file = os.path.join(root_path, meta_file)
|
||||
with open(txt_file, 'r') as ttf:
|
||||
for line in ttf:
|
||||
cols = line.split('|')
|
||||
wav_file = os.path.join(root_path, folder, 'wavs', cols[0]+'.wav')
|
||||
if os.path.isfile(wav_file):
|
||||
text = cols[1]
|
||||
items.append([text, wav_file])
|
||||
else:
|
||||
continue
|
||||
random.shuffle(items)
|
||||
return items
|
||||
|
||||
|
||||
def ljspeech(root_path, meta_file):
|
||||
"""Normalizes the Nancy meta data file to TTS format"""
|
||||
txt_file = os.path.join(root_path, meta_file)
|
||||
|
|
Loading…
Reference in New Issue