1) Combine MSD with Multi-Period disc

2) Add remove weight norm layer on Generator
This commit is contained in:
rishikksh20 2021-02-18 01:26:58 +05:30 committed by Eren Gölge
parent 4493feb95c
commit 7b7c5d635f
3 changed files with 85 additions and 35 deletions

View File

@ -24,6 +24,14 @@ class ResStack(nn.Module):
return x1 + x2 return x1 + x2
def remove_weight_norm(self): def remove_weight_norm(self):
# nn.utils.remove_weight_norm(self.resstack[2])
# nn.utils.remove_weight_norm(self.resstack[4])
for idx, layer in enumerate(self.resstack):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
nn.utils.remove_weight_norm(self.shortcut) nn.utils.remove_weight_norm(self.shortcut)
class MRF(nn.Module): class MRF(nn.Module):
@ -38,3 +46,8 @@ class MRF(nn.Module):
x2 = self.resblock2(x) x2 = self.resblock2(x)
x3 = self.resblock3(x) x3 = self.resblock3(x)
return x1 + x2 + x3 return x1 + x2 + x3
def remove_weight_norm(self):
self.resblock1.remove_weight_norm()
self.resblock2.remove_weight_norm()
self.resblock3.remove_weight_norm()

View File

@ -18,7 +18,7 @@ class Generator(nn.Module):
out = int(inp / 2) out = int(inp / 2)
generator += [ generator += [
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2),
nn.ConvTranspose1d(inp, out, k, k // 2), nn.utils.weight_norm(nn.ConvTranspose1d(inp, out, k, k//2)),
MRF(kr, out, Dr) MRF(kr, out, Dr)
] ]
hu = out hu = out
@ -37,3 +37,24 @@ class Generator(nn.Module):
x2 = self.generator(x1) x2 = self.generator(x1)
out = self.output(x2) out = self.output(x2)
return out return out
def remove_weight_norm(self):
for idx, layer in enumerate(self.input):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
for idx, layer in enumerate(self.output):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()
for idx, layer in enumerate(self.generator):
if len(layer.state_dict()) != 0:
try:
nn.utils.remove_weight_norm(layer)
except:
layer.remove_weight_norm()

View File

@ -1,27 +1,37 @@
from torch import nn from torch import nn
import torch.nn.functional as F import torch.nn.functional as F
from TTS.vocoder.models.melgan_multiscale_discriminator import MelganMultiscaleDiscriminator
class PeriodDiscriminator(nn.Module): class PeriodDiscriminator(nn.Module):
def __init__(self, period): def __init__(self, period):
super(PeriodDiscriminator, self).__init__() super(PeriodDiscriminator, self).__init__()
layer = []
self.period = period self.period = period
inp = 1 self.discriminator = nn.ModuleList([
for l in range(4): nn.Sequential(
out = int(2 ** (5 + l + 1)) nn.utils.weight_norm(nn.Conv2d(1, 64, kernel_size=(5, 1), stride=(3, 1))),
layer += [ nn.LeakyReLU(0.2, inplace=True),
nn.utils.weight_norm(nn.Conv2d(inp, out, kernel_size=(5, 1), stride=(3, 1))), ),
nn.LeakyReLU(0.2) nn.Sequential(
] nn.utils.weight_norm(nn.Conv2d(64, 128, kernel_size=(5, 1), stride=(3, 1))),
inp = out nn.LeakyReLU(0.2, inplace=True),
self.layer = nn.Sequential(*layer) ),
self.output = nn.Sequential( nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(out, 1024, kernel_size=(5, 1))), nn.utils.weight_norm(nn.Conv2d(128, 256, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2), nn.LeakyReLU(0.2, inplace=True),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))) ),
) nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(256, 512, kernel_size=(5, 1), stride=(3, 1))),
nn.LeakyReLU(0.2, inplace=True),
),
nn.Sequential(
nn.utils.weight_norm(nn.Conv2d(512, 1024, kernel_size=(5, 1))),
nn.LeakyReLU(0.2, inplace=True),
),
nn.utils.weight_norm(nn.Conv2d(1024, 1, kernel_size=(3, 1))),
])
def forward(self, x): def forward(self, x):
batch_size = x.shape[0] batch_size = x.shape[0]
@ -29,23 +39,29 @@ class PeriodDiscriminator(nn.Module):
x = F.pad(x, (0, pad), "reflect") x = F.pad(x, (0, pad), "reflect")
y = x.view(batch_size, -1, self.period).contiguous() y = x.view(batch_size, -1, self.period).contiguous()
y = y.unsqueeze(1) y = y.unsqueeze(1)
out1 = self.layer(y) features = list()
return self.output(out1) for module in self.discriminator:
y = module(y)
features.append(y)
return features[-1], features[:-1]
class MPD(nn.Module): class HiFiDiscriminator(nn.Module):
def __init__(self, periods=[2, 3, 5, 7, 11], segment_length=16000): def __init__(self, periods=[2, 3, 5, 7, 11]):
super(MPD, self).__init__() super(HiFiDiscriminator, self).__init__()
self.mpd1 = PeriodDiscriminator(periods[0]) self.discriminators = nn.ModuleList([ PeriodDiscriminator(periods[0]),
self.mpd2 = PeriodDiscriminator(periods[1]) PeriodDiscriminator(periods[1]),
self.mpd3 = PeriodDiscriminator(periods[2]) PeriodDiscriminator(periods[2]),
self.mpd4 = PeriodDiscriminator(periods[3]) PeriodDiscriminator(periods[3]),
self.mpd5 = PeriodDiscriminator(periods[4]) PeriodDiscriminator(periods[4]),
])
self.msd = MelganMultiscaleDiscriminator()
def forward(self, x): def forward(self, x):
out1 = self.mpd1(x) scores, feats = self.msd(x)
out2 = self.mpd2(x) for key, disc in enumerate(self.discriminators):
out3 = self.mpd3(x) score, feat = disc(x)
out4 = self.mpd4(x) scores.append(score)
out5 = self.mpd5(x) feats.append(feat)
return out1, out2, out3, out4, out5 return scores, feats