Merge branch 'geneing-upstream_clean' into dev

This commit is contained in:
root 2020-01-10 13:51:51 +01:00
commit 7ba3565a61
5 changed files with 99 additions and 95 deletions

View File

@ -1,7 +1,7 @@
{
"model": "Tacotron2", // one of the model in models/
"run_name": "ljspeech",
"run_description": "tacotron2 without bidirectional decoder",
"run_name": "ljspeech-graves",
"run_description": "tacotron2 wuth graves attention",
// AUDIO PARAMETERS
"audio":{
@ -38,7 +38,7 @@
"batch_size": 32, // Batch size for training. Lower values than 32 might cause hard to learn attention. It is overwritten by 'gradual_training'.
"eval_batch_size":16,
"r": 7, // Number of decoder frames to predict per iteration. Set the initial values if gradual training is enabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 16], [290000, 1, 8]], // ONLY TACOTRON - set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled.
"gradual_training": [[0, 7, 64], [1, 5, 64], [50000, 3, 32], [130000, 2, 32], [290000, 1, 32]], // ONLY TACOTRON - set gradual training steps [first_step, r, batch_size]. If it is null, gradual training is disabled.
"loss_masking": true, // enable / disable loss masking against the sequence padding.
// VALIDATION
@ -47,6 +47,7 @@
"test_sentences_file": null, // set a file to load sentences to be used for testing. If it is null then we use default english sentences.
// OPTIMIZER
"noam_schedule": false,
"grad_clip": 1, // upper limit for gradients for clipping.
"epochs": 1000, // total number of epochs to train.
"lr": 0.0001, // Initial learning rate. If Noam decay is active, maximum learning rate.
@ -60,7 +61,7 @@
"prenet_dropout": true, // enable/disable dropout at prenet.
// ATTENTION
"attention_type": "original", // 'original' or 'graves'
"attention_type": "graves", // 'original' or 'graves'
"attention_heads": 5, // number of attention heads (only for 'graves')
"attention_norm": "sigmoid", // softmax or sigmoid. Suggested to use softmax for Tacotron2 and sigmoid for Tacotron.
"windowing": false, // Enables attention windowing. Used only in eval mode.
@ -90,8 +91,8 @@
"max_seq_len": 150, // DATASET-RELATED: maximum text length
// PATHS
// "output_path": "../keep/", // DATASET-RELATED: output path for all training outputs.
"output_path": "/media/erogol/data_ssd/Models/runs/",
"output_path": "/data5/rw/pit/keep/", // DATASET-RELATED: output path for all training outputs.
// "output_path": "/media/erogol/data_ssd/Models/runs/",
// PHONEMES
"phoneme_cache_path": "mozilla_us_phonemes", // phoneme computation is slow, therefore, it caches results in the given folder.
@ -108,8 +109,8 @@
[
{
"name": "ljspeech",
// "path": "/data/ro/shared/data/keithito/LJSpeech-1.1/",
"path": "/home/erogol/Data/LJSpeech-1.1",
"path": "/data5/ro/shared/data/keithito/LJSpeech-1.1/",
// "path": "/home/erogol/Data/LJSpeech-1.1",
"meta_file_train": "metadata_train.csv",
"meta_file_val": "metadata_val.csv"
}

View File

@ -82,6 +82,11 @@ class Prenet(nn.Module):
return x
####################
# ATTENTION MODULES
####################
class LocationLayer(nn.Module):
def __init__(self,
attention_dim,
@ -105,86 +110,6 @@ class LocationLayer(nn.Module):
return processed_attention
class GravesAttention(nn.Module):
""" Graves attention as described here:
- https://arxiv.org/abs/1910.10288
"""
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
def __init__(self, query_dim, K):
super(GravesAttention, self).__init__()
self._mask_value = 0.0
self.K = K
# self.attention_alignment = 0.05
self.eps = 1e-5
self.J = None
self.N_a = nn.Sequential(
nn.Linear(query_dim, query_dim, bias=True),
nn.ReLU(),
nn.Linear(query_dim, 3*K, bias=True))
self.attention_weights = None
self.mu_prev = None
self.init_layers()
def init_layers(self):
torch.nn.init.constant_(self.N_a[2].bias[10:15], 0.5)
torch.nn.init.constant_(self.N_a[2].bias[5:10], 10)
def init_states(self, inputs):
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]).to(inputs.device).expand([inputs.shape[0], self.K, inputs.shape[1]])
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
# pylint: disable=R0201
# pylint: disable=unused-argument
def preprocess_inputs(self, inputs):
return None
def forward(self, query, inputs, processed_inputs, mask):
"""
shapes:
query: B x D_attention_rnn
inputs: B x T_in x D_encoder
processed_inputs: place_holder
mask: B x T_in
"""
gbk_t = self.N_a(query)
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
# attention model parameters
# each B x K
g_t = gbk_t[:, 0, :]
b_t = gbk_t[:, 1, :]
k_t = gbk_t[:, 2, :]
# attention GMM parameters
inv_sig_t = torch.exp(-torch.clamp(b_t, min=-6, max=9)) # variance
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
g_t = torch.softmax(g_t, dim=-1) * inv_sig_t + self.eps
# each B x K x T_in
g_t = g_t.unsqueeze(2).expand(g_t.size(0),
g_t.size(1),
inputs.size(1))
inv_sig_t = inv_sig_t.unsqueeze(2).expand_as(g_t)
mu_t_ = mu_t.unsqueeze(2).expand_as(g_t)
j = self.J[:g_t.size(0), :, :inputs.size(1)]
# attention weights
phi_t = g_t * torch.exp(-0.5 * inv_sig_t * (mu_t_ - j)**2)
alpha_t = self.COEF * torch.sum(phi_t, 1)
# apply masking
if mask is not None:
alpha_t.data.masked_fill_(~mask, self._mask_value)
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.attention_weights = alpha_t
self.mu_prev = mu_t
return context
class OriginalAttention(nn.Module):
"""Following the methods proposed here:
- https://arxiv.org/abs/1712.05884
@ -364,6 +289,82 @@ class OriginalAttention(nn.Module):
return context
class GravesAttention(nn.Module):
""" Graves attention as described here:
- https://arxiv.org/abs/1910.10288
"""
COEF = 0.3989422917366028 # numpy.sqrt(1/(2*numpy.pi))
def __init__(self, query_dim, K):
super(GravesAttention, self).__init__()
self._mask_value = 0.0
self.K = K
# self.attention_alignment = 0.05
self.eps = 1e-5
self.J = None
self.N_a = nn.Sequential(
nn.Linear(query_dim, query_dim, bias=True),
nn.ReLU(),
nn.Linear(query_dim, 3*K, bias=True))
self.attention_weights = None
self.mu_prev = None
self.init_layers()
def init_layers(self):
torch.nn.init.constant_(self.N_a[2].bias[(2*self.K):(3*self.K)], 1.)
torch.nn.init.constant_(self.N_a[2].bias[self.K:(2*self.K)], 10)
def init_states(self, inputs):
if self.J is None or inputs.shape[1] > self.J.shape[-1]:
self.J = torch.arange(0, inputs.shape[1]).to(inputs.device)
self.attention_weights = torch.zeros(inputs.shape[0], inputs.shape[1]).to(inputs.device)
self.mu_prev = torch.zeros(inputs.shape[0], self.K).to(inputs.device)
# pylint: disable=R0201
# pylint: disable=unused-argument
def preprocess_inputs(self, inputs):
return None
def forward(self, query, inputs, processed_inputs, mask):
"""
shapes:
query: B x D_attention_rnn
inputs: B x T_in x D_encoder
processed_inputs: place_holder
mask: B x T_in
"""
gbk_t = self.N_a(query)
gbk_t = gbk_t.view(gbk_t.size(0), -1, self.K)
# attention model parameters
# each B x K
g_t = gbk_t[:, 0, :]
b_t = gbk_t[:, 1, :]
k_t = gbk_t[:, 2, :]
# attention GMM parameters
sig_t = torch.nn.functional.softplus(b_t) + self.eps
mu_t = self.mu_prev + torch.nn.functional.softplus(k_t)
g_t = torch.softmax(g_t, dim=-1) / sig_t + self.eps
# each B x K x T_in
j = self.J[:inputs.size(1)]
# attention weights
phi_t = g_t.unsqueeze(-1) * torch.exp(-0.5 * (mu_t.unsqueeze(-1) - j)**2 / (sig_t.unsqueeze(-1)**2))
alpha_t = self.COEF * torch.sum(phi_t, 1)
# apply masking
if mask is not None:
alpha_t.data.masked_fill_(~mask, self._mask_value)
context = torch.bmm(alpha_t.unsqueeze(1), inputs).squeeze(1)
self.attention_weights = alpha_t
self.mu_prev = mu_t
return context
def init_attn(attn_type, query_dim, embedding_dim, attention_dim,
location_attention, attention_location_n_filters,
attention_location_kernel_size, windowing, norm, forward_attn,

View File

@ -303,9 +303,9 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.2"
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
"nbformat_minor": 4
}

View File

@ -55,8 +55,11 @@ def tts():
if __name__ == '__main__':
if not config or not synthesizer:
args = create_argparser().parse_args()
args = create_argparser().parse_args()
# Setup synthesizer from CLI args if they're specified or no embedded model
# is present.
if not config or not synthesizer or args.tts_checkpoint or args.tts_config:
synthesizer = Synthesizer(args)
app.run(debug=config.debug, host='0.0.0.0', port=config.port)

View File

@ -53,15 +53,14 @@ class Synthesizer(object):
num_speakers = 0
self.tts_model = setup_model(self.input_size, num_speakers=num_speakers, c=self.tts_config)
# load model state
map_location = None if use_cuda else torch.device('cpu')
cp = torch.load(tts_checkpoint, map_location=map_location)
cp = torch.load(tts_checkpoint, map_location=torch.device('cpu'))
# load the model
self.tts_model.load_state_dict(cp['model'])
if use_cuda:
self.tts_model.cuda()
self.tts_model.eval()
self.tts_model.decoder.max_decoder_steps = 3000
if 'r' in cp and self.tts_config.model in ["Tacotron", "TacotronGST"]:
if 'r' in cp:
self.tts_model.decoder.set_r(cp['r'])
def load_wavernn(self, lib_path, model_path, model_file, model_config, use_cuda):