make speaker_mapping a global variable to prevent reload. Fix glow-tts training

This commit is contained in:
erogol 2020-12-01 03:23:25 +01:00
parent a757b203bc
commit 7c3cdced1a
3 changed files with 57 additions and 64 deletions

View File

@ -7,41 +7,37 @@ import os
import sys
import time
import traceback
from random import randrange
import torch
from random import randrange
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
from TTS.tts.datasets.preprocess import load_meta_data
from TTS.tts.datasets.TTSDataset import MyDataset
from TTS.tts.layers.losses import GlowTTSLoss
from TTS.tts.utils.generic_utils import setup_model, check_config_tts
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import parse_speakers, load_speaker_mapping
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
from TTS.utils.audio import AudioProcessor
from TTS.utils.console_logger import ConsoleLogger
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.generic_utils import (KeepAverage, count_parameters,
create_experiment_folder, get_git_branch,
remove_experiment_folder, set_init_dict)
from TTS.utils.io import copy_config_file, load_config
from TTS.utils.radam import RAdam
from TTS.utils.tensorboard_logger import TensorboardLogger
from TTS.utils.training import (NoamLR, check_update,
setup_torch_training_env)
# DISTRIBUTED
from torch.nn.parallel import DistributedDataParallel as DDP_th
from torch.utils.data.distributed import DistributedSampler
from TTS.utils.distribute import init_distributed, reduce_tensor
from TTS.utils.training import NoamLR, setup_torch_training_env
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
def setup_loader(ap, r, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
@ -78,29 +74,29 @@ def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
def format_data(data):
if c.use_speaker_embedding:
speaker_mapping = load_speaker_mapping(OUT_PATH)
# setup input data
text_input = data[0]
text_lengths = data[1]
speaker_names = data[2]
mel_input = data[4].permute(0, 2, 1) # B x D x T
mel_lengths = data[5]
attn_mask = data[8]
item_idx = data[7]
attn_mask = data[9]
avg_text_length = torch.mean(text_lengths.float())
avg_spec_length = torch.mean(mel_lengths.float())
if c.use_speaker_embedding:
if c.use_external_speaker_embedding_file:
speaker_ids = data[8]
# return precomputed embedding vector
speaker_c = data[8]
else:
speaker_ids = [
# return speaker_id to be used by an embedding layer
speaker_c = [
speaker_mapping[speaker_name] for speaker_name in speaker_names
]
speaker_ids = torch.LongTensor(speaker_ids)
speaker_c = torch.LongTensor(speaker_c)
else:
speaker_ids = None
speaker_c = None
# dispatch data to GPU
if use_cuda:
@ -108,15 +104,15 @@ def format_data(data):
text_lengths = text_lengths.cuda(non_blocking=True)
mel_input = mel_input.cuda(non_blocking=True)
mel_lengths = mel_lengths.cuda(non_blocking=True)
if speaker_ids is not None:
speaker_ids = speaker_ids.cuda(non_blocking=True)
if speaker_c is not None:
speaker_c = speaker_c.cuda(non_blocking=True)
if attn_mask is not None:
attn_mask = attn_mask.cuda(non_blocking=True)
return text_input, text_lengths, mel_input, mel_lengths, speaker_ids,\
avg_text_length, avg_spec_length, attn_mask
return text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
avg_text_length, avg_spec_length, attn_mask, item_idx
def data_depended_init(model, ap, speaker_mapping=None):
def data_depended_init(model, ap):
"""Data depended initialization for activation normalization."""
if hasattr(model, 'module'):
for f in model.module.decoder.flows:
@ -127,20 +123,23 @@ def data_depended_init(model, ap, speaker_mapping=None):
if getattr(f, "set_ddi", False):
f.set_ddi(True)
data_loader = setup_loader(ap, 1, is_val=False, speaker_mapping=speaker_mapping)
data_loader = setup_loader(ap, 1, is_val=False)
model.train()
print(" > Data depended initialization ... ")
num_iter = 0
with torch.no_grad():
for _, data in enumerate(data_loader):
# format data
text_input, text_lengths, mel_input, mel_lengths, speaker_ids,\
_, _, attn_mask = format_data(data)
text_input, text_lengths, mel_input, mel_lengths, spekaer_embed,\
_, _, attn_mask, item_idx = format_data(data)
# forward pass model
_ = model.forward(
text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_ids)
break
text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=spekaer_embed)
if num_iter == c.data_dep_init_iter:
break
num_iter += 1
if hasattr(model, 'module'):
for f in model.module.decoder.flows:
@ -154,9 +153,9 @@ def data_depended_init(model, ap, speaker_mapping=None):
def train(model, criterion, optimizer, scheduler,
ap, global_step, epoch, speaker_mapping=None):
ap, global_step, epoch):
data_loader = setup_loader(ap, 1, is_val=False,
verbose=(epoch == 0), speaker_mapping=speaker_mapping)
verbose=(epoch == 0))
model.train()
epoch_time = 0
keep_avg = KeepAverage()
@ -172,8 +171,8 @@ def train(model, criterion, optimizer, scheduler,
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, speaker_ids,\
avg_text_length, avg_spec_length, attn_mask = format_data(data)
text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
avg_text_length, avg_spec_length, attn_mask, item_idx = format_data(data)
loader_time = time.time() - end_time
@ -203,10 +202,6 @@ def train(model, criterion, optimizer, scheduler,
c.grad_clip)
optimizer.step()
grad_norm, _ = check_update(model, c.grad_clip, ignore_stopnet=True)
optimizer.step()
# setup lr
if c.noam_schedule:
scheduler.step()
@ -215,7 +210,7 @@ def train(model, criterion, optimizer, scheduler,
current_lr = optimizer.param_groups[0]['lr']
# compute alignment error (the lower the better )
align_error = 1 - alignment_diagonal_score(alignments)
align_error = 1 - alignment_diagonal_score(alignments, binary=True)
loss_dict['align_error'] = align_error
step_time = time.time() - start_time
@ -276,7 +271,7 @@ def train(model, criterion, optimizer, scheduler,
# Diagnostic visualizations
# direct pass on model for spec predictions
target_speaker = None if speaker_ids is None else speaker_ids[:1]
target_speaker = None if speaker_c is None else speaker_c[:1]
spec_pred, *_ = model.inference(text_input[:1], text_lengths[:1], g=target_speaker)
spec_pred = spec_pred.permute(0, 2, 1)
gt_spec = mel_input.permute(0, 2, 1)
@ -313,8 +308,8 @@ def train(model, criterion, optimizer, scheduler,
@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping):
data_loader = setup_loader(ap, 1, is_val=True, speaker_mapping=speaker_mapping)
def evaluate(model, criterion, ap, global_step, epoch):
data_loader = setup_loader(ap, 1, is_val=True)
model.eval()
epoch_time = 0
keep_avg = KeepAverage()
@ -324,12 +319,12 @@ def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping):
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, speaker_ids,\
_, _, attn_mask = format_data(data)
text_input, text_lengths, mel_input, mel_lengths, speaker_c,\
_, _, attn_mask, item_idx = format_data(data)
# forward pass model
z, logdet, y_mean, y_log_scale, alignments, o_dur_log, o_total_dur = model.forward(
text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_ids)
text_input, text_lengths, mel_input, mel_lengths, attn_mask, g=speaker_c)
# compute loss
loss_dict = criterion(z, y_mean, y_log_scale, logdet, mel_lengths,
@ -370,7 +365,7 @@ def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping):
if args.rank == 0:
# Diagnostic visualizations
# direct pass on model for spec predictions
target_speaker = None if speaker_ids is None else speaker_ids[:1]
target_speaker = None if speaker_c is None else speaker_c[:1]
if hasattr(model, 'module'):
spec_pred, *_ = model.module.inference(text_input[:1], text_lengths[:1], g=target_speaker)
else:
@ -464,7 +459,7 @@ def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping):
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if 'characters' in c.keys():
@ -539,13 +534,13 @@ def main(args): # pylint: disable=redefined-outer-name
best_loss = float('inf')
global_step = args.restore_step
model = data_depended_init(model, ap, speaker_mapping)
model = data_depended_init(model, ap)
for epoch in range(0, c.epochs):
c_logger.print_epoch_start(epoch, c.epochs)
train_avg_loss_dict, global_step = train(model, criterion, optimizer,
scheduler, ap, global_step,
epoch, speaker_mapping)
eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch, speaker_mapping=speaker_mapping)
epoch)
eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict['avg_loss']
if c.run_eval:

View File

@ -18,7 +18,7 @@ from TTS.tts.layers.losses import TacotronLoss
from TTS.tts.utils.generic_utils import check_config_tts, setup_model
from TTS.tts.utils.io import save_best_model, save_checkpoint
from TTS.tts.utils.measures import alignment_diagonal_score
from TTS.tts.utils.speakers import load_speaker_mapping, parse_speakers
from TTS.tts.utils.speakers import parse_speakers
from TTS.tts.utils.synthesis import synthesis
from TTS.tts.utils.text.symbols import make_symbols, phonemes, symbols
from TTS.tts.utils.visual import plot_alignment, plot_spectrogram
@ -39,7 +39,7 @@ from TTS.utils.training import (NoamLR, adam_weight_decay, check_update,
use_cuda, num_gpus = setup_torch_training_env(True, False)
def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
def setup_loader(ap, r, is_val=False, verbose=False):
if is_val and not c.run_eval:
loader = None
else:
@ -74,10 +74,7 @@ def setup_loader(ap, r, is_val=False, verbose=False, speaker_mapping=None):
pin_memory=False)
return loader
def format_data(data, speaker_mapping=None):
if speaker_mapping is None and c.use_speaker_embedding and not c.use_external_speaker_embedding_file:
speaker_mapping = load_speaker_mapping(OUT_PATH)
def format_data(data):
# setup input data
text_input = data[0]
text_lengths = data[1]
@ -127,7 +124,7 @@ def format_data(data, speaker_mapping=None):
def train(model, criterion, optimizer, optimizer_st, scheduler,
ap, global_step, epoch, scaler, scaler_st, speaker_mapping=None):
ap, global_step, epoch, scaler, scaler_st):
data_loader = setup_loader(ap, model.decoder.r, is_val=False,
verbose=(epoch == 0), speaker_mapping=speaker_mapping)
model.train()
@ -144,7 +141,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data, speaker_mapping)
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, max_text_length, max_spec_length = format_data(data)
loader_time = time.time() - end_time
global_step += 1
@ -327,7 +324,7 @@ def train(model, criterion, optimizer, optimizer_st, scheduler,
@torch.no_grad()
def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping=None):
def evaluate(model, criterion, ap, global_step, epoch):
data_loader = setup_loader(ap, model.decoder.r, is_val=True, speaker_mapping=speaker_mapping)
model.eval()
epoch_time = 0
@ -338,7 +335,7 @@ def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping=None):
start_time = time.time()
# format data
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data, speaker_mapping)
text_input, text_lengths, mel_input, mel_lengths, linear_input, stop_targets, speaker_ids, speaker_embeddings, _, _ = format_data(data)
assert mel_input.shape[1] % model.decoder.r == 0
# forward pass model
@ -493,7 +490,7 @@ def evaluate(model, criterion, ap, global_step, epoch, speaker_mapping=None):
# FIXME: move args definition/parsing inside of main?
def main(args): # pylint: disable=redefined-outer-name
# pylint: disable=global-variable-undefined
global meta_data_train, meta_data_eval, symbols, phonemes
global meta_data_train, meta_data_eval, symbols, phonemes, speaker_mapping
# Audio processor
ap = AudioProcessor(**c.audio)
if 'characters' in c.keys():
@ -599,8 +596,8 @@ def main(args): # pylint: disable=redefined-outer-name
print("\n > Number of output frames:", model.decoder.r)
train_avg_loss_dict, global_step = train(model, criterion, optimizer,
optimizer_st, scheduler, ap,
global_step, epoch, scaler, scaler_st, speaker_mapping)
eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch, speaker_mapping)
global_step, epoch, scaler, scaler_st)
eval_avg_loss_dict = evaluate(model, criterion, ap, global_step, epoch)
c_logger.print_epoch_end(epoch, eval_avg_loss_dict)
target_loss = train_avg_loss_dict['avg_postnet_loss']
if c.run_eval:

View File

@ -104,6 +104,7 @@ class GlowTts(nn.Module):
c_in_channels=self.c_in_channels)
if num_speakers > 1 and not external_speaker_embedding_dim:
# speaker embedding layer
self.emb_g = nn.Embedding(num_speakers, self.c_in_channels)
nn.init.uniform_(self.emb_g.weight, -0.1, 0.1)