let synthesizer to pass speaker encoder file paths to speaker manager

This commit is contained in:
Eren Gölge 2021-04-23 17:48:08 +02:00
parent f69195739e
commit 7eb0c60d2e
1 changed files with 66 additions and 2 deletions

View File

@ -25,6 +25,8 @@ class Synthesizer(object):
tts_speakers_file: str = "",
vocoder_checkpoint: str = "",
vocoder_config: str = "",
encoder_checkpoint: str = "",
encoder_config: str = "",
use_cuda: bool = False,
) -> None:
"""General 🐸 TTS interface for inference. It takes a tts and a vocoder
@ -41,6 +43,8 @@ class Synthesizer(object):
tts_config_path (str): path to the tts config file.
vocoder_checkpoint (str, optional): path to the vocoder model file. Defaults to None.
vocoder_config (str, optional): path to the vocoder config file. Defaults to None.
encoder_checkpoint (str, optional): path to the speaker encoder model file. Defaults to `""`,
encoder_config (str, optional): path to the speaker encoder config file. Defaults to `""`,
use_cuda (bool, optional): enable/disable cuda. Defaults to False.
"""
self.tts_checkpoint = tts_checkpoint
@ -48,6 +52,8 @@ class Synthesizer(object):
self.tts_speakers_file = tts_speakers_file
self.vocoder_checkpoint = vocoder_checkpoint
self.vocoder_config = vocoder_config
self.encoder_checkpoint = encoder_checkpoint
self.encoder_config = encoder_config
self.use_cuda = use_cuda
self.tts_model = None
@ -69,16 +75,37 @@ class Synthesizer(object):
@staticmethod
def _get_segmenter(lang: str):
"""get the sentence segmenter for the given language.
Args:
lang (str): target language code.
Returns:
[type]: [description]
"""
return pysbd.Segmenter(language=lang, clean=True)
def _load_speakers(self, speaker_file: str) -> None:
"""Load the SpeakerManager to organize multi-speaker TTS. It loads the speakers meta-data and the speaker
encoder if it is defined.
Args:
speaker_file (str): path to the speakers meta-data file.
"""
print("Loading speakers ...")
self.speaker_manager = SpeakerManager()
self.speaker_manager = SpeakerManager(encoder_model_path=self.encoder_checkpoint, encoder_config_path=self.encoder_config)
self.speaker_manager.load_x_vectors_file(self.tts_config.get("external_speaker_embedding_file", speaker_file))
self.num_speakers = self.speaker_manager.num_speakers
self.speaker_embedding_dim = self.speaker_manager.x_vector_dim
def _load_tts(self, tts_checkpoint: str, tts_config_path: str, use_cuda: bool) -> None:
"""Load the TTS model.
Args:
tts_checkpoint (str): path to the model checkpoint.
tts_config_path (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
# pylint: disable=global-statement
global symbols, phonemes
@ -109,6 +136,13 @@ class Synthesizer(object):
self.tts_model.cuda()
def _load_vocoder(self, model_file: str, model_config: str, use_cuda: bool) -> None:
"""Load the vocoder model.
Args:
model_file (str): path to the model checkpoint.
model_config (str): path to the model config file.
use_cuda (bool): enable/disable CUDA use.
"""
self.vocoder_config = load_config(model_config)
self.vocoder_ap = AudioProcessor(verbose=False, **self.vocoder_config["audio"])
self.vocoder_model = setup_generator(self.vocoder_config)
@ -117,24 +151,54 @@ class Synthesizer(object):
self.vocoder_model.cuda()
def _split_into_sentences(self, text) -> List[str]:
"""Split give text into sentences.
Args:
text (str): input text in string format.
Returns:
List[str]: list of sentences.
"""
return self.seg.segment(text)
def save_wav(self, wav: List[int], path: str) -> None:
"""Save the waveform as a file.
Args:
wav (List[int]): waveform as a list of values.
path (str): output path to save the waveform.
"""
wav = np.array(wav)
self.ap.save_wav(wav, path, self.output_sample_rate)
def tts(self, text: str, speaker_idx: str = "", style_wav=None) -> List[int]:
def tts(self, text: str, speaker_idx: str = "", speaker_wav=None, style_wav=None) -> List[int]:
"""🐸 TTS magic. Run all the models and generate speech.
Args:
text (str): input text.
speaker_idx (str, optional): spekaer id for multi-speaker models. Defaults to "".
speaker_wav ():
style_wav ([type], optional): style waveform for GST. Defaults to None.
Returns:
List[int]: [description]
"""
start_time = time.time()
wavs = []
sens = self._split_into_sentences(text)
print(" > Text splitted to sentences.")
print(sens)
# get the speaker embedding from the saved x_vectors.
if speaker_idx and isinstance(speaker_idx, str):
speaker_embedding = self.speaker_manager.get_x_vectors_by_speaker(speaker_idx)[0]
else:
speaker_embedding = None
# compute a new x_vector from the given clip.
if speaker_wav is not None:
speaker_embedding = self.speaker_manager.compute_x_vector_from_clip(speaker_wav)
use_gl = self.vocoder_model is None
for sen in sens: